Hypoxic preconditioning has been shown to improve hypoxic tolerance in mice,accompanied by the downregulation of DNA methyltransferases(DNMTs)in the brain.However,the roles played by DNMTs in the multiple neuroprotect...Hypoxic preconditioning has been shown to improve hypoxic tolerance in mice,accompanied by the downregulation of DNA methyltransferases(DNMTs)in the brain.However,the roles played by DNMTs in the multiple neuroprotective mechanisms associated with hypoxic preconditioning remain poorly understood.This study aimed to establish an in vitro model of hypoxic preconditioning,using a cultured mouse hippocampal neuronal cell line(HT22 cells),to examine the effects of DNMTs on the endogenous neuroprotective mechanisms that occur during hypoxic preconditioning.HT22 cells were divided into a control group,which received no exposure to hypoxia,a hypoxia group,which was exposed to hypoxia once,and a hypoxic preconditioning group,which was exposed to four cycles of hypoxia.To test the ability of hypoxic preadaptation to induce hypoxic tolerance,cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay.Cell viability improved in the hypoxic preconditioning group compared with that in the hypoxia group.The effects of hypoxic preconditioning on the cell cycle and apoptosis in HT22 cells were examined by western blot assay and flow cytometry.Compared with the hypoxia group,the expression levels of caspase-3 and spectrin,which are markers of early apoptosis and S-phase arrest,respectively,noticeably reduced in the hypoxic preconditioning group.Finally,enzyme-linked immunosorbent assay,real-time polymerase chain reaction,and western blot assay were used to investigate the changes in DNMT expression and activity during hypoxic preconditioning.The results showed that compared with the control group,hypoxic preconditioning downregulated the expression levels of DNMT3A and DNMT3B mRNA and protein in HT22 cells and decreased the activities of total DNMTs and DNMT3B.In conclusion,hypoxic preconditioning may exert anti-hypoxic neuroprotective effects,maintaining HT22 cell viability and inhibiting cell apoptosis.These neuroprotective mechanisms may be associated with the inhibition of DNMT3A and DNMT3B.展开更多
Copper matrix composites consisting of chromium (Cr) or ferrochrome (Cr-Fe) as strengthening elements and molybdenum disulfide as a lubricant had been sintered in nitrogen and hydrogen atmosphere, respectively. Th...Copper matrix composites consisting of chromium (Cr) or ferrochrome (Cr-Fe) as strengthening elements and molybdenum disulfide as a lubricant had been sintered in nitrogen and hydrogen atmosphere, respectively. Their morphology and energy-dispersive X-ray spectrometry (EDS) analysis showed that serious interaction occurred between MoS2 and Cr (or Cr-Fe) particles when the samples were sintered in hydrogen atmosphere. Chromium sulfide compound (CrxSy) was formed as a reaction product, which decreased the density and strength of the composites remarkably. This interaction was inhibited when the samples were sintered in nitrogen atmosphere; thus, the mechanical properties of the composites were improved.展开更多
Bisperoxo(1,10-phenanthroline) oxovanadate(BpV) can reportedly block the cell cycle. The present study examined whether BpV alters gene expression by affecting DNA methyltransferases(DNMTs), which would impact the cel...Bisperoxo(1,10-phenanthroline) oxovanadate(BpV) can reportedly block the cell cycle. The present study examined whether BpV alters gene expression by affecting DNA methyltransferases(DNMTs), which would impact the cell cycle. Immortalized mouse hippocampal neuronal precursor cells(HT_(22)) were treated with 0.3 or 3 μM BpV. Proliferation, morphology, and viability of HT_(22) cells were detected with an IncuCyte real-time video imaging system or inverted microscope and 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, respectively. mRNA and protein expression of DNMTs and p21 in HT_(22) cells was detected by real-time polymerase chain reaction and immunoblotting, respectively. In addition, DNMT activity was measured with an enzyme-linked immunosorbent assay. Effects of BpV on the cell cycle were analyzed using flow cytometry. Results demonstrated that treatment with 0.3 μM BpV did not affect cell proliferation, morphology, or viability; however, treatment with 3 μM BpV decreased cell viability, increased expression of both DNMT3B mRNA and protein, and inhibited the proliferation of HT_(22) cells; and 3 μM BpV also blocked the cell cycle and increased expression of the regulatory factor p21 by increasing DNMT expression in mouse hippocampal neurons.展开更多
Molybdenum disulfide(MoS_2) is one of the most commonly used solid lubricants for Cu–Fe-based friction materials. Nevertheless, MoS_2 reacts with metal matrices to produce metal sulfides(e.g., FeS) and Mo during sint...Molybdenum disulfide(MoS_2) is one of the most commonly used solid lubricants for Cu–Fe-based friction materials. Nevertheless, MoS_2 reacts with metal matrices to produce metal sulfides(e.g., FeS) and Mo during sintering, and the lubricity of the composite may be related to the generation of FeS. Herein, the use of FeS as an alternative to MoS_2 for producing Cu–Fe-based friction materials was investigated. According to the reaction principle of thermodynamics, two composites—one with MoS_2(Fe–Cu–MoS_2 sample) and the other with FeS(FeS–Cu_2S–Cu–Fe–Mo sample), were prepared and their friction behaviors and mechanical properties were compared. The results showed that MoS_2 reacted with the Cu–Fe matrix to produce FeS, metallic ternary sulfides, and Mo when sintered at 1050°C. The MoS_2–Cu–Fe and FeS–Cu_2S–Cu–Fe–Mo samples thereby exhibited similar characteristics with respect to phase composition, density, hardness, and tribological behaviors. Micrographs of the worn surfaces revealed that the stable friction regime for both composites stemmed from the iron sulfides friction layers rather than from the molybdenum sulfides layers.展开更多
As a result of an error by the authors,in the paper,one of the authors’names,“Xu-Juan Li”,was misspelled.The correct spelling of the name should be“Xiu-Juan Li”.
Thanks to more and more gamma-ray bursts with measured redshift and extended emission detected by the recent space telescopes,it is urgent and possible to check whether those previous energy correlations still satisfy...Thanks to more and more gamma-ray bursts with measured redshift and extended emission detected by the recent space telescopes,it is urgent and possible to check whether those previous energy correlations still satisfy the particular sample involving only the bursts accompanied by tail radiations.Using 20 long and 22 short bursts with extended emission,we find that the popular γ-ray energy correlations of the intrinsic peak energy versus the isotropic energy(Amati relation) and the intrinsic peak energy versus the peak luminosity(Yonetoku relation) do exist in both short and long bursts.However,it is much better if these gamma-ray bursts with extended emissions are reclassified into two subgroups of E-Ⅰ and E-Ⅱ that make the above energy correlations more tight.As proposed by Zhang et al.,the energy correlations can be utilized to distinguish these kinds of gamma-ray bursts in the plane of bolometric fluence versus peak energy as well.Interestingly,the peculiar short GRB 170817 A belongs to the E-Ⅰ group in the fluence versus peak energy plane,but it is an outlier of both the Amati and Yonetoku relations even though the off-axis effect has been corrected.Furthermore,we compare the radiation features between the extended emissions and the prompt gamma-rays in order to search for their possible connections.Taking into account all these factors,we conclude that gamma-ray bursts with extended emission are still required to model with dichotomic groups,namely E-Ⅰ and E-Ⅱ classes,which hint that they might have different origins.展开更多
Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flo...Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flow coefficient of coupled throttling grooves is proposed to resolve that difficulty.With this purpose,an approach of a 3 D numerical simulation and an experimental bench were introduced based on the prototype of a commercial proportional valve.The results show consistency between the numerical simulation and the bench test.Based on that,the concept of‘saturation limit’is introduced to describe the value gap between the current and saturated flows,so that the flow-coefficient saturation limit of the prototype in the process can be deducted.Accordingly,an approximate flow coefficient suitable for coupled throttling grooves within finite variable space,which is based on three typical throttling structures(i.e.O-shape,U-shape,and C-shape)of the coupled throttling grooves,is obtained based on an orthogonal test.The model results are consistent with the numerical and experimental results,with maximum errors of less than 5.29%and 5.34%,respectively.This suggests that the proposed method is effective in approximating the flow coefficient.展开更多
We investigate high time resolution data obtained by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)during the flare event on 2022 April 21 at 01:52 UT.Several subpeaks with durat...We investigate high time resolution data obtained by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)during the flare event on 2022 April 21 at 01:52 UT.Several subpeaks with durations of 4-6 s have been detected in the hard X-ray precursor phase,and the key feature is that they appear in pairs and seem like double-peak struc-tures.These subpeaks are rarely observed in hard X-ray band and confirmed by the microwave obtained by Nobeyama Radio Polarimeters(NoRP)and Radio Solar Telescope Network(RSTN).While an exponential function can describe the continuum component of the time profile from the precursor to part of the impulsive phase.The periods of quasi-periodic pulsations(QPPs)are detected to be about 7.3 and 12.8 s for the precursor and impulsive phase,respectively,with at least 95%confidence level.The paired QPPs are assumed to be double-peak QPPs and then the scenario of current loop coalescence model is found to be in good agreement with our observation.The precursor phase can be interpreted as the oscillating coalescence of two islands,while the impulsive phase can be interpreted as more islands to coalesce one by one to form larger islands.展开更多
The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges ...The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.展开更多
In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to ...In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.展开更多
The sudden emergence of severe acute respiratory syndrome coronavirus(SARS-CoV) has caused global panic in 2003,and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is availab...The sudden emergence of severe acute respiratory syndrome coronavirus(SARS-CoV) has caused global panic in 2003,and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available;thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain(RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensinconverting enzyme 2(ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81460283(to GS),81660307(to GS),31860307(to WX)the Science Foundation of Inner Mongolia Autonomous Region of China,Nos.2018LH08078(to GS),2018LH03029(to JHS)+2 种基金the Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region of China,No.NJYT-18-B26(to WX)the Scientific Research Foundation of Baotou Medical College of China,Nos.BYJJ-YF 201717(to SCY),BYJJ-YF 201606(to WX)the National Key Research and Development Program of China,No.2017YFC1308405(to GS)。
文摘Hypoxic preconditioning has been shown to improve hypoxic tolerance in mice,accompanied by the downregulation of DNA methyltransferases(DNMTs)in the brain.However,the roles played by DNMTs in the multiple neuroprotective mechanisms associated with hypoxic preconditioning remain poorly understood.This study aimed to establish an in vitro model of hypoxic preconditioning,using a cultured mouse hippocampal neuronal cell line(HT22 cells),to examine the effects of DNMTs on the endogenous neuroprotective mechanisms that occur during hypoxic preconditioning.HT22 cells were divided into a control group,which received no exposure to hypoxia,a hypoxia group,which was exposed to hypoxia once,and a hypoxic preconditioning group,which was exposed to four cycles of hypoxia.To test the ability of hypoxic preadaptation to induce hypoxic tolerance,cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium assay.Cell viability improved in the hypoxic preconditioning group compared with that in the hypoxia group.The effects of hypoxic preconditioning on the cell cycle and apoptosis in HT22 cells were examined by western blot assay and flow cytometry.Compared with the hypoxia group,the expression levels of caspase-3 and spectrin,which are markers of early apoptosis and S-phase arrest,respectively,noticeably reduced in the hypoxic preconditioning group.Finally,enzyme-linked immunosorbent assay,real-time polymerase chain reaction,and western blot assay were used to investigate the changes in DNMT expression and activity during hypoxic preconditioning.The results showed that compared with the control group,hypoxic preconditioning downregulated the expression levels of DNMT3A and DNMT3B mRNA and protein in HT22 cells and decreased the activities of total DNMTs and DNMT3B.In conclusion,hypoxic preconditioning may exert anti-hypoxic neuroprotective effects,maintaining HT22 cell viability and inhibiting cell apoptosis.These neuroprotective mechanisms may be associated with the inhibition of DNMT3A and DNMT3B.
基金financially supported by the Key Project of the National Eleventh-Five Year Research Program of China (No.2009BAG12A07)
文摘Copper matrix composites consisting of chromium (Cr) or ferrochrome (Cr-Fe) as strengthening elements and molybdenum disulfide as a lubricant had been sintered in nitrogen and hydrogen atmosphere, respectively. Their morphology and energy-dispersive X-ray spectrometry (EDS) analysis showed that serious interaction occurred between MoS2 and Cr (or Cr-Fe) particles when the samples were sintered in hydrogen atmosphere. Chromium sulfide compound (CrxSy) was formed as a reaction product, which decreased the density and strength of the composites remarkably. This interaction was inhibited when the samples were sintered in nitrogen atmosphere; thus, the mechanical properties of the composites were improved.
基金supported by the National Natural Science Foundation of China,No.81160244,81360316,81460283,81660307(all to GS)the Inner Mongolia Science Foundation of China,No.2018LH08078(to GS),2016MS(LH)0307(to SYJ)+4 种基金the Baotou Health Foundation,China,No.WSJJ2016008(to SYJ)the Inner Mongolia Educational Research Foundation of China,No.NJZY207(to GS),NJZY17243(to SCY),NJZY17250(to XLL),NJZY17251(to SYJ)the Baotou Medical College Foundation of China,No.BYJJ-DF201602,BYJJ-YF201615,BSJJ201617,BYJJ-QM201633,BYJJ-QM201656,BYJJ201502(to GS)the Science and Technology Planning Project of Baotou of China,No.CX2017-5(to GS)the National Key R&D Program of China,No.2017YFC1308405(to GS)
文摘Bisperoxo(1,10-phenanthroline) oxovanadate(BpV) can reportedly block the cell cycle. The present study examined whether BpV alters gene expression by affecting DNA methyltransferases(DNMTs), which would impact the cell cycle. Immortalized mouse hippocampal neuronal precursor cells(HT_(22)) were treated with 0.3 or 3 μM BpV. Proliferation, morphology, and viability of HT_(22) cells were detected with an IncuCyte real-time video imaging system or inverted microscope and 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethonyphenol)-2-(4-sulfophenyl)-2H-tetrazolium, respectively. mRNA and protein expression of DNMTs and p21 in HT_(22) cells was detected by real-time polymerase chain reaction and immunoblotting, respectively. In addition, DNMT activity was measured with an enzyme-linked immunosorbent assay. Effects of BpV on the cell cycle were analyzed using flow cytometry. Results demonstrated that treatment with 0.3 μM BpV did not affect cell proliferation, morphology, or viability; however, treatment with 3 μM BpV decreased cell viability, increased expression of both DNMT3B mRNA and protein, and inhibited the proliferation of HT_(22) cells; and 3 μM BpV also blocked the cell cycle and increased expression of the regulatory factor p21 by increasing DNMT expression in mouse hippocampal neurons.
基金financially supported by the National Natural Science Foundation of China (No. 51572026)
文摘Molybdenum disulfide(MoS_2) is one of the most commonly used solid lubricants for Cu–Fe-based friction materials. Nevertheless, MoS_2 reacts with metal matrices to produce metal sulfides(e.g., FeS) and Mo during sintering, and the lubricity of the composite may be related to the generation of FeS. Herein, the use of FeS as an alternative to MoS_2 for producing Cu–Fe-based friction materials was investigated. According to the reaction principle of thermodynamics, two composites—one with MoS_2(Fe–Cu–MoS_2 sample) and the other with FeS(FeS–Cu_2S–Cu–Fe–Mo sample), were prepared and their friction behaviors and mechanical properties were compared. The results showed that MoS_2 reacted with the Cu–Fe matrix to produce FeS, metallic ternary sulfides, and Mo when sintered at 1050°C. The MoS_2–Cu–Fe and FeS–Cu_2S–Cu–Fe–Mo samples thereby exhibited similar characteristics with respect to phase composition, density, hardness, and tribological behaviors. Micrographs of the worn surfaces revealed that the stable friction regime for both composites stemmed from the iron sulfides friction layers rather than from the molybdenum sulfides layers.
文摘As a result of an error by the authors,in the paper,one of the authors’names,“Xu-Juan Li”,was misspelled.The correct spelling of the name should be“Xiu-Juan Li”.
基金supported by the Youth Innovations and Talents Project of Shandong Provincial Colleges and Universities(Grant No.201909118)the Natural Science Foundation(Grant Nos.ZR2018MA030,XKJJC201901 and OP201511)supported by a National Research Foundation of Korea Grant funded by the Korean government(NRF2018R1D1A3B070421880 and 2018R1A6A1A06024970)。
文摘Thanks to more and more gamma-ray bursts with measured redshift and extended emission detected by the recent space telescopes,it is urgent and possible to check whether those previous energy correlations still satisfy the particular sample involving only the bursts accompanied by tail radiations.Using 20 long and 22 short bursts with extended emission,we find that the popular γ-ray energy correlations of the intrinsic peak energy versus the isotropic energy(Amati relation) and the intrinsic peak energy versus the peak luminosity(Yonetoku relation) do exist in both short and long bursts.However,it is much better if these gamma-ray bursts with extended emissions are reclassified into two subgroups of E-Ⅰ and E-Ⅱ that make the above energy correlations more tight.As proposed by Zhang et al.,the energy correlations can be utilized to distinguish these kinds of gamma-ray bursts in the plane of bolometric fluence versus peak energy as well.Interestingly,the peculiar short GRB 170817 A belongs to the E-Ⅰ group in the fluence versus peak energy plane,but it is an outlier of both the Amati and Yonetoku relations even though the off-axis effect has been corrected.Furthermore,we compare the radiation features between the extended emissions and the prompt gamma-rays in order to search for their possible connections.Taking into account all these factors,we conclude that gamma-ray bursts with extended emission are still required to model with dichotomic groups,namely E-Ⅰ and E-Ⅱ classes,which hint that they might have different origins.
基金Project supported by the National Key R&D Program of China(No.2018YFC0810203)。
文摘Calculating the flow coefficient of a spool-valve is complicated due to the coupling–throttling effect in the throttling grooves of a proportional–directional valve.In this paper,a methodology for expressing the flow coefficient of coupled throttling grooves is proposed to resolve that difficulty.With this purpose,an approach of a 3 D numerical simulation and an experimental bench were introduced based on the prototype of a commercial proportional valve.The results show consistency between the numerical simulation and the bench test.Based on that,the concept of‘saturation limit’is introduced to describe the value gap between the current and saturated flows,so that the flow-coefficient saturation limit of the prototype in the process can be deducted.Accordingly,an approximate flow coefficient suitable for coupled throttling grooves within finite variable space,which is based on three typical throttling structures(i.e.O-shape,U-shape,and C-shape)of the coupled throttling grooves,is obtained based on an orthogonal test.The model results are consistent with the numerical and experimental results,with maximum errors of less than 5.29%and 5.34%,respectively.This suggests that the proposed method is effective in approximating the flow coefficient.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1938102, and 11973092)the National Program on Key Research and Development Project (Grant No. 2016YFA0400802)supported by the Surface Project of Jiangsu Province (Grant No. BK20211402)
文摘We investigate high time resolution data obtained by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)during the flare event on 2022 April 21 at 01:52 UT.Several subpeaks with durations of 4-6 s have been detected in the hard X-ray precursor phase,and the key feature is that they appear in pairs and seem like double-peak struc-tures.These subpeaks are rarely observed in hard X-ray band and confirmed by the microwave obtained by Nobeyama Radio Polarimeters(NoRP)and Radio Solar Telescope Network(RSTN).While an exponential function can describe the continuum component of the time profile from the precursor to part of the impulsive phase.The periods of quasi-periodic pulsations(QPPs)are detected to be about 7.3 and 12.8 s for the precursor and impulsive phase,respectively,with at least 95%confidence level.The paired QPPs are assumed to be double-peak QPPs and then the scenario of current loop coalescence model is found to be in good agreement with our observation.The precursor phase can be interpreted as the oscillating coalescence of two islands,while the impulsive phase can be interpreted as more islands to coalesce one by one to form larger islands.
文摘The flue gas pollutants deep-removal technology(DRT) focusing on PM2.5removal is the prime method of further reducing pollutants emission from coal-fired power plants. In view of the four key technological challenges in developing the DRT, studies were conducted on a series of purification technologies and the DRT was developed and successfully applied in 660 MW and 1000 MW coal-fired units. This paper analyzes the application results of the demonstration project, and proposes a roadmap for the follow-up researches and optimizations.
基金support from National Key Basic Research Program (No. 2010CB732404)National Natural Science Foundation of China (No. 21175020)+1 种基金Qinglan Project Sci-Tech Innovation Team of Jiangsu ProvinceSuzhou Science & Technology Major Project (No. ZXY2012028)
文摘In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.
基金This study was supported by SKLPBS1805 and 2019-JCJQ-JJ-167(to G.Z.)supported by the National Science Fund for Distinguished Young Scholar(No.81925025)+1 种基金the Innovative Research Group(No.81621005)from the NSFCthe Innovation Fund for Medical Sciences(No.2019-I2M-5-049)from the Chinese Academy of Medical Sciences。
文摘The sudden emergence of severe acute respiratory syndrome coronavirus(SARS-CoV) has caused global panic in 2003,and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available;thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain(RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensinconverting enzyme 2(ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.