An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W e...An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.展开更多
The oscillatory motions of shocks in highly underexpanded jets with nozzle pressure ratios of 5.60, 7.47, 9.34, and11.21 are quantitatively studied by using large eddy simulation. Two types of shock oscillations are o...The oscillatory motions of shocks in highly underexpanded jets with nozzle pressure ratios of 5.60, 7.47, 9.34, and11.21 are quantitatively studied by using large eddy simulation. Two types of shock oscillations are observed: one is the Mach disk oscillation in the streamwise direction and the other is the shock oscillation in the radial direction. It is found that the Mach disk moves quickly in the middle of the oscillatory region but slowly at the top or bottom boundaries. The oscillation cycles of Mach disk are the same for different cases, and are all dominated by an axisymmetric mode of 5.298 k Hz. For the oscillation in the radial direction, the shocks oscillate more toward the jet centerline but less in the jet shear layer, and the oscillation magnitude is an increasing function of screech amplitude. The cycles of the radial shock oscillation switch randomly between the two screech frequencies for the first two cases. However, the oscillation periodicity is more complex for the jets with high nozzle pressure ratios of 9.34 and 11.21 than for the jets with the low nozzle pressure ratios of 5.6 and 7.47. In addition, the shock oscillation characteristics are also captured by coarse mesh and Smagorinsky model,but the coarse mesh tends to predict a slower and weaker shock oscillation.展开更多
Typically,rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency.NiFe layered double hydroxide(NiFe LDH)composite,an efficient ...Typically,rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency.NiFe layered double hydroxide(NiFe LDH)composite,an efficient oxygen evolution reaction(OER)catalyst,suffers from slow hydrogen evolution reaction(HER)kinetics,restricting its application for overall water splitting.Herein,we construct the hierarchical MoS_(2)/NiFe LDH nanosheets with a heterogeneous interface used for HER and OER.Benefiting the hierarchical heterogeneous interface optimized hydrogen Gibbs free energy,tens of exposed active sites,rapid mass-and charge-transfer processes,the MoS_(2)/NiFe LDH displays a highly efficient synergistic electrocatalytic effect.The MoS_(2)/NiFe LDH electrode in 1 mol/L KOH exhibits excellent HER activity,only 98 mV overpotential at 10 mA/cm^(2).Significantly,when it assembled as anode and cathode for overall water splitting,only 1.61 V cell voltage was required to achieve 10 mA/cm^(2)with excellent durability(50 h).展开更多
The excessive emission of CO_(2) has caused many environmental issues and is severely threatening the eco-system.CO_(2) electroreduction reaction(CO_(2) RR) that driven by sustainable power is an ideal route for reali...The excessive emission of CO_(2) has caused many environmental issues and is severely threatening the eco-system.CO_(2) electroreduction reaction(CO_(2) RR) that driven by sustainable power is an ideal route for realizing the net reduction of CO_(2) and carbon recycle.Developing efficient electrocatalysts with low cost and high performance is critical for the wide applications of CO_(2) RR electrolysis.Among the various explored CO_(2) RR catalysts,non-noble metal(NNM)-based nanomaterials have drawn increasing attentions due to the remarkable performance and low cost.In this mini-review,the recent advances of NNM-based CO_(2) RR catalysts are summarized,and the catalysts are classified based on their corresponding reduction products.The preparation strategies for engineering the electrocatalysts are introduced,and the relevant CO_(2) RR mechanisms are discussed in detail.Finally,the current challenges in CO_(2) RR research are presented,and some perspectives are proposed for the future development of CO_(2) RR technology.This mini-review introduces the recent advances and frontiers of NNM-based CO_(2) RR catalysts,which should shed light on the further exploration of efficient CO_(2) RR electrocatalysts.展开更多
Pt(Ⅱ)-based metallacycles,as an important family of supramolecular coordination complexes(SCCs),have exhibited excellent antitumor activity at the cell level.However,the biomedical applications of Pt(Ⅱ)-based metall...Pt(Ⅱ)-based metallacycles,as an important family of supramolecular coordination complexes(SCCs),have exhibited excellent antitumor activity at the cell level.However,the biomedical applications of Pt(Ⅱ)-based metallacycles for animal studies are still hindered by their poor stability,non-targeted tumour,and lack of detectable feedback for evaluating therapeutic progress.Herein,we propose a strategy that introduces melanin dots as a biomedical platform to load bright-emission Pt(Ⅱ)-based metallacycles,thereby constructing a theranostic agent that enables photoacoustic imaging(PAI)-guided chemo-photothermal combinational therapy.Melanin dots act as a protective carrier to preserve the integrity of Pt(Ⅱ)-based metallacycles before uptake by tumour tissues.Meanwhile,the PAI signal from melanin dots furnishes more comprehensive information on the tumour.Moreover,the heat generated after NIR laser irradiation can not only trigger the apoptosis of tumour cells but also promote the deeper penetration of Pt(Ⅱ)-based SCCs into tumour tissue,thus enhancing the efficiency of chemotherapy.展开更多
基金the National Natural Science Foundation of China for financially supporting this research through project No.51005027
文摘An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni-TiN cylindrical coating electrode,copper electrode and Cu50 W electrode.The wear mechanism of Ni-TiN/Cu composite electrode in the case of high-frequency pulse current is studied,and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out.Compared with the electrode made from homogeneous material,the high frequency electromagnetic properties of Ni-TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.
基金Project supported by the National Natural Science Foundation of China(Grant No.11602028)the Science and Technology Project of General Administration of Quality Supervision Inspection and Quarantine of China(Grant Nos.2017QK119 and 2017QK188)
文摘The oscillatory motions of shocks in highly underexpanded jets with nozzle pressure ratios of 5.60, 7.47, 9.34, and11.21 are quantitatively studied by using large eddy simulation. Two types of shock oscillations are observed: one is the Mach disk oscillation in the streamwise direction and the other is the shock oscillation in the radial direction. It is found that the Mach disk moves quickly in the middle of the oscillatory region but slowly at the top or bottom boundaries. The oscillation cycles of Mach disk are the same for different cases, and are all dominated by an axisymmetric mode of 5.298 k Hz. For the oscillation in the radial direction, the shocks oscillate more toward the jet centerline but less in the jet shear layer, and the oscillation magnitude is an increasing function of screech amplitude. The cycles of the radial shock oscillation switch randomly between the two screech frequencies for the first two cases. However, the oscillation periodicity is more complex for the jets with high nozzle pressure ratios of 9.34 and 11.21 than for the jets with the low nozzle pressure ratios of 5.6 and 7.47. In addition, the shock oscillation characteristics are also captured by coarse mesh and Smagorinsky model,but the coarse mesh tends to predict a slower and weaker shock oscillation.
基金supported by National Natural Science Foundation of China(No.21875048)Outstanding Youth Project of Guangdong Natural Science Foundation(No.2020B1515020028)+2 种基金Major Scientific Project of Guangdong University(No.2017KZDXM059)Yangcheng Scholars Research Project of Guangzhou(No.201831820)Science and Technology Research Project of Guangzhou(No.202002010007)。
基金financially supported by National Natural Science Foundation of China(Nos.21875048 and 21905063)Outstanding Youth Project of Guangdong Natural Science Foundation(No.2020B1515020028)+1 种基金Guangdong Natural Science Foundation(No.2021A1515010066)Science and Technology Research Project of Guangzhou(Nos.201904010052 and 202002010007)。
文摘Typically,rational interfacial engineering can effectively modify the adsorption energy of active hydrogen molecules to improve water splitting efficiency.NiFe layered double hydroxide(NiFe LDH)composite,an efficient oxygen evolution reaction(OER)catalyst,suffers from slow hydrogen evolution reaction(HER)kinetics,restricting its application for overall water splitting.Herein,we construct the hierarchical MoS_(2)/NiFe LDH nanosheets with a heterogeneous interface used for HER and OER.Benefiting the hierarchical heterogeneous interface optimized hydrogen Gibbs free energy,tens of exposed active sites,rapid mass-and charge-transfer processes,the MoS_(2)/NiFe LDH displays a highly efficient synergistic electrocatalytic effect.The MoS_(2)/NiFe LDH electrode in 1 mol/L KOH exhibits excellent HER activity,only 98 mV overpotential at 10 mA/cm^(2).Significantly,when it assembled as anode and cathode for overall water splitting,only 1.61 V cell voltage was required to achieve 10 mA/cm^(2)with excellent durability(50 h).
基金financially supported by the National Natural Science Foundation of China(Nos.52001227 and 51972224)the China Postdoctoral Science Foundation(No.2019M661014)。
文摘The excessive emission of CO_(2) has caused many environmental issues and is severely threatening the eco-system.CO_(2) electroreduction reaction(CO_(2) RR) that driven by sustainable power is an ideal route for realizing the net reduction of CO_(2) and carbon recycle.Developing efficient electrocatalysts with low cost and high performance is critical for the wide applications of CO_(2) RR electrolysis.Among the various explored CO_(2) RR catalysts,non-noble metal(NNM)-based nanomaterials have drawn increasing attentions due to the remarkable performance and low cost.In this mini-review,the recent advances of NNM-based CO_(2) RR catalysts are summarized,and the catalysts are classified based on their corresponding reduction products.The preparation strategies for engineering the electrocatalysts are introduced,and the relevant CO_(2) RR mechanisms are discussed in detail.Finally,the current challenges in CO_(2) RR research are presented,and some perspectives are proposed for the future development of CO_(2) RR technology.This mini-review introduces the recent advances and frontiers of NNM-based CO_(2) RR catalysts,which should shed light on the further exploration of efficient CO_(2) RR electrocatalysts.
基金the National Key Research and Development Program(2017YFA0505203)the National Natural Science Foundation of China(21672070)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Opening Projects of Shanghai Key Laboratory of Green Chemistry and Chemical Processes。
文摘Pt(Ⅱ)-based metallacycles,as an important family of supramolecular coordination complexes(SCCs),have exhibited excellent antitumor activity at the cell level.However,the biomedical applications of Pt(Ⅱ)-based metallacycles for animal studies are still hindered by their poor stability,non-targeted tumour,and lack of detectable feedback for evaluating therapeutic progress.Herein,we propose a strategy that introduces melanin dots as a biomedical platform to load bright-emission Pt(Ⅱ)-based metallacycles,thereby constructing a theranostic agent that enables photoacoustic imaging(PAI)-guided chemo-photothermal combinational therapy.Melanin dots act as a protective carrier to preserve the integrity of Pt(Ⅱ)-based metallacycles before uptake by tumour tissues.Meanwhile,the PAI signal from melanin dots furnishes more comprehensive information on the tumour.Moreover,the heat generated after NIR laser irradiation can not only trigger the apoptosis of tumour cells but also promote the deeper penetration of Pt(Ⅱ)-based SCCs into tumour tissue,thus enhancing the efficiency of chemotherapy.