Based on our previous pulsed current and internal overvoltage test data and the experience of common commercial high power cables,a 100 kA coaxial pulsed power cable is designed and manufactured to adapt the coaxial e...Based on our previous pulsed current and internal overvoltage test data and the experience of common commercial high power cables,a 100 kA coaxial pulsed power cable is designed and manufactured to adapt the coaxial electric energy breech transmission between the plasma generator and the pulsed power supply(PPS) in electrothermal-chemical(ETC) guns.The index parameters are analyzed and determined.Semi-conductor layers and a shield stiffener are introduced to prevent the deformation and burst of the pulsed power cable structurally.The semi-conductor layer can eliminate the air gap and balance the electric field in the cable.The shield stiffener can multiply the mechanical strength to restrain the strong electrodynamic force produced by the core dislocation of the outer conductor.The multi-coupling of electromagnetic field,stress field and thermal field analysis are established to assist in aided design of electrical strength,mechanical strength and temperature rise characteristics.Both a DC voltage withstand test and pulsed discharge tests are introduced to verify and inspect the performance and dynamic response of the pulsed power cable.The 25 kV/5 min DC voltage withstand test result shows that the sample leakage current is nearly 3 μA and no abnormal phenomena of the pulsed power cable sample occurred.The pulsed discharge tests show that the sample can sustain the 100 kA peak current.Furthermore,this 100 kA coaxial pulsed power cable can satisfy the ETC test requirements.展开更多
Harvesting clean energy such as solar energy and salinity gradient energy directly from the surrounding environment has attracted great attention.A promising proof-of-concept combination of cation-selective membrane-b...Harvesting clean energy such as solar energy and salinity gradient energy directly from the surrounding environment has attracted great attention.A promising proof-of-concept combination of cation-selective membrane-based osmotic energy with photoelectrochemical-based solar energy has been developed,highlighting the great potential for the direct conversion of osmotic energy to hydrogen energy.With the help of a 50-fold concentration gradient,the MXene-CdSe quantum dots system exhibits the highest photocurrent enhancement ratio(Δ/_(L-H)/Δ/_(L-L)),and the hydrogen production is increased by about 33%at a bias of 0 V versus reversible hydrogen electrode.Directly converting osmotic energy and solar energy into hydrogen energy suggests the possibility of coupling osmotic energy with other renewable energy sources.展开更多
基金supported by the United Foundation of China Ordnance Industry(Grant No.6141B010220)
文摘Based on our previous pulsed current and internal overvoltage test data and the experience of common commercial high power cables,a 100 kA coaxial pulsed power cable is designed and manufactured to adapt the coaxial electric energy breech transmission between the plasma generator and the pulsed power supply(PPS) in electrothermal-chemical(ETC) guns.The index parameters are analyzed and determined.Semi-conductor layers and a shield stiffener are introduced to prevent the deformation and burst of the pulsed power cable structurally.The semi-conductor layer can eliminate the air gap and balance the electric field in the cable.The shield stiffener can multiply the mechanical strength to restrain the strong electrodynamic force produced by the core dislocation of the outer conductor.The multi-coupling of electromagnetic field,stress field and thermal field analysis are established to assist in aided design of electrical strength,mechanical strength and temperature rise characteristics.Both a DC voltage withstand test and pulsed discharge tests are introduced to verify and inspect the performance and dynamic response of the pulsed power cable.The 25 kV/5 min DC voltage withstand test result shows that the sample leakage current is nearly 3 μA and no abnormal phenomena of the pulsed power cable sample occurred.The pulsed discharge tests show that the sample can sustain the 100 kA peak current.Furthermore,this 100 kA coaxial pulsed power cable can satisfy the ETC test requirements.
基金supported by the National Key R&D Program of China(grant nos.2017YFA02-06900,2017YFA0206904,2017YFA0206903,and 2021YFA1500800)the National Natural Science Foundation of China(grant nos.21625303,22122207,21905287,21988102,22088102,and 21971251).
文摘Harvesting clean energy such as solar energy and salinity gradient energy directly from the surrounding environment has attracted great attention.A promising proof-of-concept combination of cation-selective membrane-based osmotic energy with photoelectrochemical-based solar energy has been developed,highlighting the great potential for the direct conversion of osmotic energy to hydrogen energy.With the help of a 50-fold concentration gradient,the MXene-CdSe quantum dots system exhibits the highest photocurrent enhancement ratio(Δ/_(L-H)/Δ/_(L-L)),and the hydrogen production is increased by about 33%at a bias of 0 V versus reversible hydrogen electrode.Directly converting osmotic energy and solar energy into hydrogen energy suggests the possibility of coupling osmotic energy with other renewable energy sources.