The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
Radiation uniformity is important for Z-pinch dynamic hohlraum driven fusion. In order to understand the radiation uniformity of Z-pinchdynamic hohlraum, the code MULTI-2D with a new developed magnetic field package i...Radiation uniformity is important for Z-pinch dynamic hohlraum driven fusion. In order to understand the radiation uniformity of Z-pinchdynamic hohlraum, the code MULTI-2D with a new developed magnetic field package is employed to investigate the related physical processeson Julong-I facility with drive current about 7e8 MA. Numerical simulations suggest that Z-pinch dynamic hohlraum with radiation temperaturemore than 100 eV can be created on Julong-I facility. Although some X-rays can escape out of the hohlraum from Z-pinch plasma and electrodes, the radiation field near the foam center is quite uniform after a transition time. For the load parameters used in this paper, the transitiontime for the thermal wave transports from r = 1 mm to r = 0 mm is about 2.0 ns. Implosion of a testing pellet driven by cylindrical dynamichohlraum shows that symmetrical implosion is hard to achieve due to the relatively slow propagation speed of thermal wave and the compressionof cylindrical shock in the foam. With the help of quasi-spherical implosion, the hohlraum radiation uniformity and corresponding pelletimplosion symmetry can be significantly improved thanks to the shape modulation of thermal wave front and shock wave front.展开更多
The natural convective heat transfer performance of an aluminum hexagonal honeycomb acting as a novel heat sink for LED cooling is experi- mentally investigated. The concept of adding an adiabatic square chimney ex- t...The natural convective heat transfer performance of an aluminum hexagonal honeycomb acting as a novel heat sink for LED cooling is experi- mentally investigated. The concept of adding an adiabatic square chimney ex- tension for heat transfer enhancement is proposed, and the effects of chimney shape, height, and diameter are quantified. The average Nuav of a heated hon- eycomb with straight chimney is significantly higher than that without chimney, and the enhancement increases with increasing chimney height. At a given chim- ney height, honeycombs with divergent chimneys perform better than those with convergent ones. For a fixed divergent angle, the Nuav number increases mono- tonically with increasing chimney height. In contrast, with the convergent angle fixed, there exists an optimal chimney height to achieve maximum heat transfer.展开更多
An alternate yet general form of the classical effective thermal conductivity model (Maxwell model) for two-phase porous materials is presented, serving an explicit thermo-physicM basis. It is demonstrated that the ...An alternate yet general form of the classical effective thermal conductivity model (Maxwell model) for two-phase porous materials is presented, serving an explicit thermo-physicM basis. It is demonstrated that the reduced effective thermal conductivity of the porous media due to non-conducting pore inclusions is caused by the mechanism of thermal stretching, which is a combi- nation of reduced effective heat flow area and elongated heat transfer distance (thermal tortuosity).展开更多
A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH,...A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.展开更多
Thermal transport in a highly porous metallic wire-woven bulk Kagome (WBK) is numerically and analytically modeled. Based on topology similarity and upon introducing an elongation parameter in thermal tortuosity, an...Thermal transport in a highly porous metallic wire-woven bulk Kagome (WBK) is numerically and analytically modeled. Based on topology similarity and upon introducing an elongation parameter in thermal tortuosity, an idealized Kagome with non-twisted struts is employed. Special focus is placed upon quanti- fying the effect of topological anisotropy of WBK upon its effective conductivity. It is demonstrated that the effective conductivity reduces linearly as the poros- ity increases, and the extent of the reduction is significantly dependent on the orientation of WBK. The governing physical mechanism of anisotropic thermal transport in WBK is found to be the anisotropic thermal tortuosity caused by the intrinsic anisotropic topology of WBK.展开更多
The high summer indoor temperature in agricultural greenhouse is not conducive to crop growth,so it is necessary to cool the greenhouse. In this study,taking the agricultural multi-span greenhouse with strong temperat...The high summer indoor temperature in agricultural greenhouse is not conducive to crop growth,so it is necessary to cool the greenhouse. In this study,taking the agricultural multi-span greenhouse with strong temperature adjustment ability for example,we make an experimental analysis on the temperature changes inside and outside the greenhouse under nine different equipment combinations( fan,skylight,sunshade,sunshade + fan,cooling pad + fan,skylight + fan,sunshade + skylight,sunshade + fan + cooling pad,sunshade + skylight + fan),respectively,and conduct the overall assessment on the measures to cool the summer agricultural greenhouse,in order to provide a reference for selecting a cost-effective cooling method for greenhouse. Tests show that the three treatment modes of fan,sunshade and sunshade + fan almost have no cooling capacity; skylight,sunshade + skylight have cooling capacity,but the effect is slow; cooling pad + fan,sunshade + skylight +fan can reduce the indoor temperature,but the effect is not very good; skylight and fan have good cooling effect; sunshade + fan + cooling pad has obvious cooling effect,which can well meet the cooling needs in the summer greenhouse.展开更多
The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ s...The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ substantially from those of above-ground structures,it is a challenge to derive their accurate calculation procedure through engineering experience.Therefore,it is particularly important to carry out quantitative research on heat and humidity load.This study used Design Builder software to study the influence of the design state point of air conditioning in underground buildings on energy consumption.The study showed that compared with the single design temperature of 18℃,setting the temperature of 16℃ in winter and 22℃ in summer could reduce energy consumption by about 59%.And the hourly heat load,cooling load and humidity load in one year are simulated and calculated so as to quantitatively analyze the characteristics of the load.This provides a database for selecting suitable HVAC equipment.It is further emphasized that dehumidification is the key to HVAC design of underground structures,which provides a reference for similar engineering designs.展开更多
Indoor air pollution resulting from volatile organic compounds(VOCs),especially formaldehyde,is a significant health concern needed to predict indoor formaldehyde concentration(Cf)in green intelligent building design....Indoor air pollution resulting from volatile organic compounds(VOCs),especially formaldehyde,is a significant health concern needed to predict indoor formaldehyde concentration(Cf)in green intelligent building design.This study develops a thermal and wet coupling calculation model of porous fabric to account for the migration of formaldehyde molecules in indoor air and cotton,silk,and polyester fabric with heat flux in Harbin,Beijing,Xi’an,Shanghai,Guangzhou,and Kunming,China.The time-by-time indoor dry-bulb temperature(T),relative humidity(RH),and Cf,obtained from verified simulations,were collated and used as input data for the long short-term memory(LSTM)of the deep learning model that predicts indoor multivariate time series Cf from the secondary source effects of indoor fabrics(adsorption and release of formaldehyde).The trained LSTM model can be used to predict multivariate time series Cf at other emission times and locations.The LSTM-based model also predicted Cf with mean absolute percentage error(MAPE),symmetric mean absolute percentage error(SMAPE),mean absolute error(MAE),mean square error(MSE),and root mean square error(RMSE)that fell within 10%,10%,0.5,0.5,and 0.8,respectively.In addition,the characteristics of the input dataset,model parameters,the prediction accuracy of different indoor fabrics,and the uncertainty of the data set are analyzed.The results show that the prediction accuracy of single data set input is higher than that of temperature and humidity input,and the prediction accuracy of LSTM is better than recurrent neural network(RNN).The method’s feasibility was established,and the study provides theoretical support for guiding indoor air pollution control measures and ensuring human health and safety.展开更多
We combined data from the Sloan Digital Sky Survey(SDSS) and the Arecibo Legacy Fast ALFA Survey(ALFALFA) to establish the HI mass vs. stellar mass and halo mass scaling relations using an abundance matching method th...We combined data from the Sloan Digital Sky Survey(SDSS) and the Arecibo Legacy Fast ALFA Survey(ALFALFA) to establish the HI mass vs. stellar mass and halo mass scaling relations using an abundance matching method that is free of the Malmquist bias. To enable abundance matching, a cross-match between the SDSS DR7 galaxy group sample and the ALFALFA HI sources provides a catalog of 16520 HI-galaxy pairs within 14270 galaxy groups(halos). By applying the observational completeness reductions for both optical and HI observations, we used the remaining 8180 ALFALFA matched sources to construct the model constraints. Taking into account the dependence of HI mass on both the galaxy and group properties, we establish two sets of scaling relations: one with a combination of stellar mass,(g-r) color and halo mass, and the other with stellar mass,specific star-formation rate(sSFR), and halo mass. We demonstrate that our models can reproduce the HI mass component as both stellar mass and halo mass. Additional tests showed that the conditional HI mass distributions as a function of the cosmic web type and the satellite fractions were well recovered.展开更多
Herein,we present a deep-learning technique for reconstructing the dark-matter density field from the redshift-space distribution of dark-matter halos.We built a UNet-architecture neural network and trained it using t...Herein,we present a deep-learning technique for reconstructing the dark-matter density field from the redshift-space distribution of dark-matter halos.We built a UNet-architecture neural network and trained it using the COmoving Lagrangian Acceleration fast simulation,which is an approximation of the N-body simulation with 5123 particles in a box size of 500 h^(-1)Mpc.Further,we tested the resulting UNet model not only with training-like test samples but also with standard N-body simulations,such as the Jiutian simulation with 61443particles in a box size of 1000 h^(-1)Mpc and the ELUCID simulation,which has a different cosmology.The real-space dark-matter density fields in the three simulations can be reconstructed reliably with only a small reduction of the cross-correlation power spectrum at 1%and 10%levels at k=0.1 and 0.3 h Mpc-1,respectively.The reconstruction clearly helps to correct for redshift-space distortions and is unaffected by the different cosmologies between the training(Planck2018)and test samples(WMAP5).Furthermore,we tested the application of the UNet-reconstructed density field to obtain the velocity&tidal field and found that this approach provides better results compared with the traditional approach based on the linear bias model,showing a 12.2%improvement in the correlation slope and a 21.1%reduction in the scatter between the predicted and true velocities.Thus,our method is highly efficient and has excellent extrapolation reliability beyond the training set.This provides an ideal solution for determining the three-dimensional underlying density field from the plentiful galaxy survey data.展开更多
Double-cone ignition[Zhang et al.,Phil.Trans.R.Soc.A 378,20200015(2020)]was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers.In this scheme,plasma jets with both h...Double-cone ignition[Zhang et al.,Phil.Trans.R.Soc.A 378,20200015(2020)]was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers.In this scheme,plasma jets with both high density and high velocity are required for collisions.Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility,employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse.The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm^(3)along the isentropic path.Subsequently,the target was further compressed and accelerated by the second laser ramp in the cone.According to the simulations,the plasma jet reached a density of up to 15 g/cm^(3),while measurements indicated a velocity of 126.8±17.1 km/s.The good agreements between experimental data and simulations are documented.展开更多
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions.In this paper,we propose an efficient intelligent method to perform laser pulse optimization via hy...The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions.In this paper,we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm.Compared to manual optimizations,the machine-learning guided method is able to efficiently improve the areal density by a factor of 63%and reduce the in-fiight-aspect ratio by a factor of 30%at the same time.A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset.This design method has been successfully demonstrated by the2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.展开更多
There was a mistake in the value of V in the righthand column of Table l.A correct version of the table is below.Also,the units of this value when stated in the text were incorrectly stated as g/cm²,where they sh...There was a mistake in the value of V in the righthand column of Table l.A correct version of the table is below.Also,the units of this value when stated in the text were incorrectly stated as g/cm²,where they should have been stated askm/s.展开更多
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金This work was supported by the National Natural Science Foundation of China(Nos.11374357,11475153,11705282,and 11475260)Science Challenge Project(No.TZ2018001)+2 种基金Research Project of NUDT(Grant No.ZK16-03-29)the Spanish Ministerio de Economia y Competivida project(No.ENE2014-54960-R)the EUROfusion Consortium project AWP15-ENR-01/CEA-02.
文摘Radiation uniformity is important for Z-pinch dynamic hohlraum driven fusion. In order to understand the radiation uniformity of Z-pinchdynamic hohlraum, the code MULTI-2D with a new developed magnetic field package is employed to investigate the related physical processeson Julong-I facility with drive current about 7e8 MA. Numerical simulations suggest that Z-pinch dynamic hohlraum with radiation temperaturemore than 100 eV can be created on Julong-I facility. Although some X-rays can escape out of the hohlraum from Z-pinch plasma and electrodes, the radiation field near the foam center is quite uniform after a transition time. For the load parameters used in this paper, the transitiontime for the thermal wave transports from r = 1 mm to r = 0 mm is about 2.0 ns. Implosion of a testing pellet driven by cylindrical dynamichohlraum shows that symmetrical implosion is hard to achieve due to the relatively slow propagation speed of thermal wave and the compressionof cylindrical shock in the foam. With the help of quasi-spherical implosion, the hohlraum radiation uniformity and corresponding pelletimplosion symmetry can be significantly improved thanks to the shape modulation of thermal wave front and shock wave front.
基金supported by the National 111 Project of China(B06024)the National Basic Research Program of China(2011CB610305)the National Natural Science Foundation of China(51206128)
文摘The natural convective heat transfer performance of an aluminum hexagonal honeycomb acting as a novel heat sink for LED cooling is experi- mentally investigated. The concept of adding an adiabatic square chimney ex- tension for heat transfer enhancement is proposed, and the effects of chimney shape, height, and diameter are quantified. The average Nuav of a heated hon- eycomb with straight chimney is significantly higher than that without chimney, and the enhancement increases with increasing chimney height. At a given chim- ney height, honeycombs with divergent chimneys perform better than those with convergent ones. For a fixed divergent angle, the Nuav number increases mono- tonically with increasing chimney height. In contrast, with the convergent angle fixed, there exists an optimal chimney height to achieve maximum heat transfer.
基金supported by the National 111 Project of China (B06024)the National Basic Research Program of China (2011CB610305)+1 种基金the Major International Joint Research Program of China (11120101002)the National Natural Science Foundation of China (51206128)
文摘An alternate yet general form of the classical effective thermal conductivity model (Maxwell model) for two-phase porous materials is presented, serving an explicit thermo-physicM basis. It is demonstrated that the reduced effective thermal conductivity of the porous media due to non-conducting pore inclusions is caused by the mechanism of thermal stretching, which is a combi- nation of reduced effective heat flow area and elongated heat transfer distance (thermal tortuosity).
基金supported by the National Natural Science Foundation of China(51506160,11472208,11472209)China Post-Doctoral Science Foundation Project(2015M580845)+1 种基金the Fundamental Research Funds for Xi’an Jiaotong University(xjj2015102)the Beijing Key Lab of Heating,Gas Supply,Ventilating and Air Conditioning Engineering(NR2016K01)
文摘A comparative optimal design of fluid-saturated prismatic cellular metal honeycombs (PCMHs) having different cell shapes is presented for thermal management applications. Based on the periodic topology of each PCMH, a unit cell (UC) for thermal transport analysis was selected to calculate its effective thermal conductivity. Without introducing any empirical coefficient, we modified and extended the analytical model of parallel-series thermal-electric network to a wider porosity range (0.7 ~ 0.98) by considering the effects of two-dimensional local heat conduction in solid ligaments inside each UC. Good agreement was achieved between analytical predictions and numerical simulations based on the method of finite volume. The concept of ligament heat conduction efficiency (LTCE) was proposed to physically explain the mechanisms underlying the effects of ligament configuration on effective thermal conductivity (ETC). Based upon the proposed theory, a construct strategy was developed for designing the ETC by altering the equivalent interaction angle with the direction of heat flow: relatively small average interaction angle for thermal conduction and relatively large one for thermal insulation.
基金supported by the National 111 Project of China(B06024)the National Basic Research Program of China(2011CB610305)
文摘Thermal transport in a highly porous metallic wire-woven bulk Kagome (WBK) is numerically and analytically modeled. Based on topology similarity and upon introducing an elongation parameter in thermal tortuosity, an idealized Kagome with non-twisted struts is employed. Special focus is placed upon quanti- fying the effect of topological anisotropy of WBK upon its effective conductivity. It is demonstrated that the effective conductivity reduces linearly as the poros- ity increases, and the extent of the reduction is significantly dependent on the orientation of WBK. The governing physical mechanism of anisotropic thermal transport in WBK is found to be the anisotropic thermal tortuosity caused by the intrinsic anisotropic topology of WBK.
基金Supported by Scientific and Technological Achievement Extension Project of Experimental Demonstration Station(Base)in Northwest A&F University(TGZX2016-31)Xi'an Science and Technology Project(NC1504 3)
文摘The high summer indoor temperature in agricultural greenhouse is not conducive to crop growth,so it is necessary to cool the greenhouse. In this study,taking the agricultural multi-span greenhouse with strong temperature adjustment ability for example,we make an experimental analysis on the temperature changes inside and outside the greenhouse under nine different equipment combinations( fan,skylight,sunshade,sunshade + fan,cooling pad + fan,skylight + fan,sunshade + skylight,sunshade + fan + cooling pad,sunshade + skylight + fan),respectively,and conduct the overall assessment on the measures to cool the summer agricultural greenhouse,in order to provide a reference for selecting a cost-effective cooling method for greenhouse. Tests show that the three treatment modes of fan,sunshade and sunshade + fan almost have no cooling capacity; skylight,sunshade + skylight have cooling capacity,but the effect is slow; cooling pad + fan,sunshade + skylight +fan can reduce the indoor temperature,but the effect is not very good; skylight and fan have good cooling effect; sunshade + fan + cooling pad has obvious cooling effect,which can well meet the cooling needs in the summer greenhouse.
基金funded by theResearch Project of ChinaNorthwest Architecture Design and Research Institute Co.,Ltd.,“Simulation of Building Energy Consumption and Airflow Organization in Special Environment” (Grant Number:NB-2020-NT-03).
文摘The calculation of heat and humidity load serves as the cornerstone of Heating,Ventilation,and Air Conditioning(HVAC)design.Nevertheless,as the heat and humidity load characteristics of underground structures differ substantially from those of above-ground structures,it is a challenge to derive their accurate calculation procedure through engineering experience.Therefore,it is particularly important to carry out quantitative research on heat and humidity load.This study used Design Builder software to study the influence of the design state point of air conditioning in underground buildings on energy consumption.The study showed that compared with the single design temperature of 18℃,setting the temperature of 16℃ in winter and 22℃ in summer could reduce energy consumption by about 59%.And the hourly heat load,cooling load and humidity load in one year are simulated and calculated so as to quantitatively analyze the characteristics of the load.This provides a database for selecting suitable HVAC equipment.It is further emphasized that dehumidification is the key to HVAC design of underground structures,which provides a reference for similar engineering designs.
基金This work was supported by the National Natural Science Foundation of China(52278129)the Key Scientific and Technological Innovation Team of Shaanxi Province(2023-CX-TD-29)Xiaohu Yang greatly acknowledged the support by the K.C.Wong Education Foundation.
文摘Indoor air pollution resulting from volatile organic compounds(VOCs),especially formaldehyde,is a significant health concern needed to predict indoor formaldehyde concentration(Cf)in green intelligent building design.This study develops a thermal and wet coupling calculation model of porous fabric to account for the migration of formaldehyde molecules in indoor air and cotton,silk,and polyester fabric with heat flux in Harbin,Beijing,Xi’an,Shanghai,Guangzhou,and Kunming,China.The time-by-time indoor dry-bulb temperature(T),relative humidity(RH),and Cf,obtained from verified simulations,were collated and used as input data for the long short-term memory(LSTM)of the deep learning model that predicts indoor multivariate time series Cf from the secondary source effects of indoor fabrics(adsorption and release of formaldehyde).The trained LSTM model can be used to predict multivariate time series Cf at other emission times and locations.The LSTM-based model also predicted Cf with mean absolute percentage error(MAPE),symmetric mean absolute percentage error(SMAPE),mean absolute error(MAE),mean square error(MSE),and root mean square error(RMSE)that fell within 10%,10%,0.5,0.5,and 0.8,respectively.In addition,the characteristics of the input dataset,model parameters,the prediction accuracy of different indoor fabrics,and the uncertainty of the data set are analyzed.The results show that the prediction accuracy of single data set input is higher than that of temperature and humidity input,and the prediction accuracy of LSTM is better than recurrent neural network(RNN).The method’s feasibility was established,and the study provides theoretical support for guiding indoor air pollution control measures and ensuring human health and safety.
基金the National Natural Science Foundation of China(Grant Nos.51976155 and 12032010)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Grant No.MCMS-I-0222K01)the Fund of Prospective Layout of Scientific Research for Nanjing University of Aeronautics and Astronautics.
基金supported by the National Key R&D Program of China(Grant Nos.2023YFA1607800,and 2023YFA1607804)the National Natural Science Foundation of China (Grant Nos.11833005,11890692,and12141302)+3 种基金the Fundamental Research Funds for the Central Universities,111 Project (Grant No.B20019)Shanghai Natural Science Foundation(Grant No.19ZR1466800)the science research grants from the China Manned Space Project (Grant Nos.CMS-CSST-2021-A02CMS-CSST-2021-A03)。
文摘We combined data from the Sloan Digital Sky Survey(SDSS) and the Arecibo Legacy Fast ALFA Survey(ALFALFA) to establish the HI mass vs. stellar mass and halo mass scaling relations using an abundance matching method that is free of the Malmquist bias. To enable abundance matching, a cross-match between the SDSS DR7 galaxy group sample and the ALFALFA HI sources provides a catalog of 16520 HI-galaxy pairs within 14270 galaxy groups(halos). By applying the observational completeness reductions for both optical and HI observations, we used the remaining 8180 ALFALFA matched sources to construct the model constraints. Taking into account the dependence of HI mass on both the galaxy and group properties, we establish two sets of scaling relations: one with a combination of stellar mass,(g-r) color and halo mass, and the other with stellar mass,specific star-formation rate(sSFR), and halo mass. We demonstrate that our models can reproduce the HI mass component as both stellar mass and halo mass. Additional tests showed that the conditional HI mass distributions as a function of the cosmic web type and the satellite fractions were well recovered.
基金supported by the National SKA Program of China(Grant Nos.2022SKA0110200,and 2022SKA0110202)National Natural Science Foundation of China(Grant Nos.12103037,11833005,and 11890692)+4 种基金111 Project(Grant No.B20019)Shanghai Natural Science Foundation(Grant No.19ZR1466800)the Science Research grants from the China Manned Space Project(Grant No.CMS-CSST-2021-A02)the Fundamental Research Funds for the Central Universities(Grant No.XJS221312)supported by the High-Performance Computing Platform of Xidian University。
文摘Herein,we present a deep-learning technique for reconstructing the dark-matter density field from the redshift-space distribution of dark-matter halos.We built a UNet-architecture neural network and trained it using the COmoving Lagrangian Acceleration fast simulation,which is an approximation of the N-body simulation with 5123 particles in a box size of 500 h^(-1)Mpc.Further,we tested the resulting UNet model not only with training-like test samples but also with standard N-body simulations,such as the Jiutian simulation with 61443particles in a box size of 1000 h^(-1)Mpc and the ELUCID simulation,which has a different cosmology.The real-space dark-matter density fields in the three simulations can be reconstructed reliably with only a small reduction of the cross-correlation power spectrum at 1%and 10%levels at k=0.1 and 0.3 h Mpc-1,respectively.The reconstruction clearly helps to correct for redshift-space distortions and is unaffected by the different cosmologies between the training(Planck2018)and test samples(WMAP5).Furthermore,we tested the application of the UNet-reconstructed density field to obtain the velocity&tidal field and found that this approach provides better results compared with the traditional approach based on the linear bias model,showing a 12.2%improvement in the correlation slope and a 21.1%reduction in the scatter between the predicted and true velocities.Thus,our method is highly efficient and has excellent extrapolation reliability beyond the training set.This provides an ideal solution for determining the three-dimensional underlying density field from the plentiful galaxy survey data.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25030500 and XDA25050200)the National Natural Science Foundation of China(Grant Nos.11988101,11890694,12173058,and 12175309)+1 种基金the National Key R&D Program of China(Grant Nos.2019YFA0405502 and 2022YFA1603204)the CAS Youth Interdisciplinary Team(Grant No.JCTD2022-05)。
文摘Double-cone ignition[Zhang et al.,Phil.Trans.R.Soc.A 378,20200015(2020)]was proposed recently as a novel path for direct-drive inertial confinement fusion using high-power lasers.In this scheme,plasma jets with both high density and high velocity are required for collisions.Here we report preliminary experimental results obtained at the Shenguang-II upgrade laser facility,employing a CHCl shell in a gold cone irradiated with a two-ramp laser pulse.The CHCl shell was pre-compressed by the first laser ramp to a density of 3.75 g/cm^(3)along the isentropic path.Subsequently,the target was further compressed and accelerated by the second laser ramp in the cone.According to the simulations,the plasma jet reached a density of up to 15 g/cm^(3),while measurements indicated a velocity of 126.8±17.1 km/s.The good agreements between experimental data and simulations are documented.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDA25051200 and XDA25050200)Startup Fund for Young Faculty at SJTU(No.21X010500627)。
文摘The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions.In this paper,we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm.Compared to manual optimizations,the machine-learning guided method is able to efficiently improve the areal density by a factor of 63%and reduce the in-fiight-aspect ratio by a factor of 30%at the same time.A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset.This design method has been successfully demonstrated by the2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.
文摘There was a mistake in the value of V in the righthand column of Table l.A correct version of the table is below.Also,the units of this value when stated in the text were incorrectly stated as g/cm²,where they should have been stated askm/s.