期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data 被引量:26
1
作者 HongLin Jin Yuan Gao +1 位作者 xiaoning su GuangYu Fu 《Earth and Planetary Physics》 CSCD 2019年第1期53-61,共9页
We analyzed 360 permanent and campaign GPS data from 1999 to 2017 in the southern Sichuan-Yunan block, and obtained crustal horizontal deformation in this region.Then, we derived the strain rate using a multi-scale sp... We analyzed 360 permanent and campaign GPS data from 1999 to 2017 in the southern Sichuan-Yunan block, and obtained crustal horizontal deformation in this region.Then, we derived the strain rate using a multi-scale spherical wavelet method.Results reveal a complex pattern of tectonic movement in the southern Sichuan-Yunnan block.Compared to the stable Eurasian plate, the maximum rate of the horizontal deformation in the southern Sichuan-Yunnan block is approximately 22 mm/a.The Xiaojiang fault shows a significantly lower deformation—a left-lateral strike-slip movement of 9.5 mm/a.The Honghe fault clearly shows a complex segmental deformation from the north to south.The northern Honghe fault shows 4.3 mm/a right strike-slip with 6.7 mm/a extension; the southern Honghe fault shows 1.9 mm/a right strike-slip with 1.9 mm/a extension; the junction zone in the Honghe and Lijiang–Xiaojinhe faults shows an obvious clockwise-rotation deformation.The strain calculation results reveal that the maximum shear-strain rate in this region reaches 70 nstrain/a, concentrated around the Xiaojiang fault and at the junction of the Honghe and Lijiang–Xiaojinhe faults.We note that most of the earthquakes with magnitudes of 4 and above that occurred in this region were within the high shear strain-rate zones and the strain rate gradient boundary zone, which indicates that the magnitude of strain accumulation is closely related to the seismic activities.Comparison of the fast shear-wave polarization direction of the upper-crust with the upper-mantle anisotropy and the direction of the surface principal compressive strain rate obtained from the inversion of the GPS data reveals that the direction of the surface principal compressive strain is basically consistent with the fast shear-wave polarization direction of the upper crust anisotropy, but different from the polarization direction of the upper mantle.Our results support the hypothesis that the principal elements of the deformation mechanism in the southern Sichuan-Yunnan block are decoupling between the upper and lower crust and ductile flow in the lower crust. 展开更多
关键词 GPS DATA CRUSTAL horizontal deformation extension STRIKE SLIP strain rate fast SHEAR-WAVE polarization
下载PDF
Heterogeneous strain regime in the eastern margin of Tibetan Plateau and its tectonic implications 被引量:5
2
作者 Guojie Meng xiaoning su +5 位作者 Weiwei Wu Jinwei Ren Yonglin Yang Jicang Wu Chieh-Hung Chen Nikolay V.Shestakov 《Earthquake Science》 CSCD 2015年第1期1-10,共10页
The eastern margin of Tibetan Plateau is one of the most active zones of tectonic deformation and seismicity in China. To monitor strain buildup and benefit seismic risk assessment, we constructed 14 survey-mode globa... The eastern margin of Tibetan Plateau is one of the most active zones of tectonic deformation and seismicity in China. To monitor strain buildup and benefit seismic risk assessment, we constructed 14 survey-mode global position system (GPS) stations throughout the northwest of Longmenshan fault. A new GPS field over 1999-2011 is derived from measurements of the newly built and pre-existing stations in this region. Sequentially, two strain rate fields, one preceding and the other following the 2008 MwT.9 Wenchuan earthquake, are obtained using the Gausian weighting approach. Strain field over 1999-2007 shows distinct strain partitioning prior to the 2008 MwT.9 Wenchuan earthquake, with compression spreading over around Longmenshan area. Strain fieldderived from the two measurements in 2009 and 2011 shows that the area around Longmenshan continues to be under striking compression, as the pattern preceding the Wenchuan earthquake, implying a causative factor of the sequent of 2013 Mw6.7 Lushan earthquake. Our GPSderived dilatation shows that both the Wenchuan and Lushan earthquakes occurred within the domain of pro- nounced contraction. The GPS velocities demonstrate that the Longriba fault underwent slight motion with the faultnormal and -parallel rates at 1.0 -4- 2.5 mm and 0.3 4-2.2 mm/a; the Longmenshan fault displayed slow activity, with a fault-normal rate at 0.8 ± 2.5 mm/a, and a fault-parallel rate at 1.8 4- 1.7 mm/a. Longriba fault is on a par with Longmenshan fault in strain partitioning to accommodate the southeastward motion of eastern margin of the Tibetan Plateau. Integrated analysis of principal strain tensors, mean principal stress, and fast directions of mantle anisotropy shows that west of Sichuan is characterized as mechanically strong crust-mantle coupling. 展开更多
关键词 GPS measurement Longmenshan faultzone Longriba fault zone Tectonic deformation TIBETANPLATEAU
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部