An experiment on 100 k J laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums.These hohlraums are designed to posses...An experiment on 100 k J laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums.These hohlraums are designed to possess one open end and one laser entrance hole(LEH)with different diameters,which would or not result in the blocking of the LEH.An x-ray streak camera that is set at 16 degrees with respect to the hohlraum axis is applied to acquire the timeresolved x-ray images from the open end.Based on the images,we can study the evolutions of the wall plasma,corona bubble plasma and LEH plasma simultaneously through an equivalent view field of hohlraum interior.Multi-group flat response x-ray detectors are applied to measure the x-ray fluxes.In order to understand these characteristics,our two-dimensional radiation hydrodynamic code is used to simulate the experimental results.For the accuracy of reproduction,dielectronic recombination and two parameter corrections are applied in our code.Based on the comparison between experiments and simulations,we quantitatively understand the blocking process of LEH and the motion effects of other plasmas.The calibrated code is beneficial to design the gas-filled hohlraum in a nearby parameter space,especially the limit size of LEH.展开更多
A recently proposed octahedral spherical hohlraum with six laser entrance holes(LEHs)is an attractive concept for an upgraded laser facility aiming at a predictable and reproducible fusion gain with a simple target de...A recently proposed octahedral spherical hohlraum with six laser entrance holes(LEHs)is an attractive concept for an upgraded laser facility aiming at a predictable and reproducible fusion gain with a simple target design.However,with the laser energies available at present,LEH size can be a critical issue.Owing to the uncertainties in simulation results,the LEH size should be determined on the basis of experimental evidence.However,determination of LEH size of an ignition target at a small-scale laser facility poses difficulties.In this paper,we propose to use the prepulse of an ignition pulse to determine the LEH size for ignition-scale hohlraums via LEH closure behavior,and we present convincing evidence from multiple diagnostics at the SGIII facility with ignition-scale hohlraum,laser prepulse,and laser beam size.The LEH closure observed in our experiment is in agreement with data from the National Ignition Facility.The total LEH area of the octahedral hohlraum is found to be very close to that of a cylindrical hohlraum,thus successfully demonstrating the feasibility of the octahedral hohlraum in terms of laser energy,which is crucially important for sizing an ignition-scale octahedrally configured laser system.This work provides a novel way to determine the LEH size of an ignition target at a small-scale laser facility,and it can be applied to other hohlraum configurations for the indirect drive approach.展开更多
基金supported by National Natural Science Foundation of China(Nos.12075219,12105269 and 12175210)。
文摘An experiment on 100 k J laser facility is performed to study the motive features and radiation properties of plasmas from different areas inside gas-filled cylindrical hohlraums.These hohlraums are designed to possess one open end and one laser entrance hole(LEH)with different diameters,which would or not result in the blocking of the LEH.An x-ray streak camera that is set at 16 degrees with respect to the hohlraum axis is applied to acquire the timeresolved x-ray images from the open end.Based on the images,we can study the evolutions of the wall plasma,corona bubble plasma and LEH plasma simultaneously through an equivalent view field of hohlraum interior.Multi-group flat response x-ray detectors are applied to measure the x-ray fluxes.In order to understand these characteristics,our two-dimensional radiation hydrodynamic code is used to simulate the experimental results.For the accuracy of reproduction,dielectronic recombination and two parameter corrections are applied in our code.Based on the comparison between experiments and simulations,we quantitatively understand the blocking process of LEH and the motion effects of other plasmas.The calibrated code is beneficial to design the gas-filled hohlraum in a nearby parameter space,especially the limit size of LEH.
基金This work is supported by the National Natural Science Foundation of China(Grant No.12035002).
文摘A recently proposed octahedral spherical hohlraum with six laser entrance holes(LEHs)is an attractive concept for an upgraded laser facility aiming at a predictable and reproducible fusion gain with a simple target design.However,with the laser energies available at present,LEH size can be a critical issue.Owing to the uncertainties in simulation results,the LEH size should be determined on the basis of experimental evidence.However,determination of LEH size of an ignition target at a small-scale laser facility poses difficulties.In this paper,we propose to use the prepulse of an ignition pulse to determine the LEH size for ignition-scale hohlraums via LEH closure behavior,and we present convincing evidence from multiple diagnostics at the SGIII facility with ignition-scale hohlraum,laser prepulse,and laser beam size.The LEH closure observed in our experiment is in agreement with data from the National Ignition Facility.The total LEH area of the octahedral hohlraum is found to be very close to that of a cylindrical hohlraum,thus successfully demonstrating the feasibility of the octahedral hohlraum in terms of laser energy,which is crucially important for sizing an ignition-scale octahedrally configured laser system.This work provides a novel way to determine the LEH size of an ignition target at a small-scale laser facility,and it can be applied to other hohlraum configurations for the indirect drive approach.