Sputter-deposited Au/NisoFeso bilayer films were annealed in a vacuum of 5×10^-4 Pa at 523 to 723 K for 30 or 90 min. The characteristics of the bilayer films were determined by Auger electron spectroscopy, field...Sputter-deposited Au/NisoFeso bilayer films were annealed in a vacuum of 5×10^-4 Pa at 523 to 723 K for 30 or 90 min. The characteristics of the bilayer films were determined by Auger electron spectroscopy, field emission scanning electron microscopy, X- ray diffractometry, a four-point probe technique, and an alternating gradient magnetometer. When the annealing temperature and time reached 723 K and 90 min, Ni and Fe atoms markedly diffused into the Au layer. The grain size of the Au layer did not change markedly with the annealing condition. As the annealing time was 30 min and the annealing temperature exceeded 573 K, the resistance of the bilayer film increased with increasing the annealing temperature. Furthermore, the resistance of the bilayer film annealed at 723 K for 90 ,nin was lower than that of the bilayer film annealed at 723 K for 30 min. All the bilayer films showed magnetic hysteresis loops. The as-deposited bilayer film showed a hard magnetization. The bilayer film represented an easy magnetization with increasing the annealing temperature. The Au/Ni50Fe50 film that annealed at 723 K for 90 min had the lowest saturation magnetization.展开更多
[ Objective] This study aimed to evaluate the genotoxicity ofAbrus mollis Hance by using single cell gel electrophoresis. [Method] Forty mice were di- vided into five groups randomly, including positive control group ...[ Objective] This study aimed to evaluate the genotoxicity ofAbrus mollis Hance by using single cell gel electrophoresis. [Method] Forty mice were di- vided into five groups randomly, including positive control group ( cyclophosphamide group ), negative control group ( physiological saline group), high-dose A. moles Hance group (30 g/kg), moderate-dose A. mollis Hance group (20 g/kg) and low-dose A. mollis Hance group (10 g/kg). Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular cells were analyzed by using single cell gel electrophoresis assay, to investigate the effect of A. mollis Hance on DNA in mouse cells. [Result] Compared with positive control group, Tail DNA% and Tail Moment of moose liver, kidney, lung and testicular cells in A. moles Hance groups were significantly lower ( P 〈 0.01 ). Compared with negative control group, Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular ceils in high-dose A. mollis Hance group were significantly lower ( P 〈 0.01 ), while the other A. mollis Hance groups showed no statistically significant difference ( P 〉0.05 ). [ Conclusion] A. mollis Hance has no damage effect on DNA in mouse cells within this experimental dose range.展开更多
文摘Sputter-deposited Au/NisoFeso bilayer films were annealed in a vacuum of 5×10^-4 Pa at 523 to 723 K for 30 or 90 min. The characteristics of the bilayer films were determined by Auger electron spectroscopy, field emission scanning electron microscopy, X- ray diffractometry, a four-point probe technique, and an alternating gradient magnetometer. When the annealing temperature and time reached 723 K and 90 min, Ni and Fe atoms markedly diffused into the Au layer. The grain size of the Au layer did not change markedly with the annealing condition. As the annealing time was 30 min and the annealing temperature exceeded 573 K, the resistance of the bilayer film increased with increasing the annealing temperature. Furthermore, the resistance of the bilayer film annealed at 723 K for 90 ,nin was lower than that of the bilayer film annealed at 723 K for 30 min. All the bilayer films showed magnetic hysteresis loops. The as-deposited bilayer film showed a hard magnetization. The bilayer film represented an easy magnetization with increasing the annealing temperature. The Au/Ni50Fe50 film that annealed at 723 K for 90 min had the lowest saturation magnetization.
基金Supported by Scientific Research Project from Guangxi Department of Education(200710MS052)Project from Technology Bureau of Yulin City(0881038)
文摘[ Objective] This study aimed to evaluate the genotoxicity ofAbrus mollis Hance by using single cell gel electrophoresis. [Method] Forty mice were di- vided into five groups randomly, including positive control group ( cyclophosphamide group ), negative control group ( physiological saline group), high-dose A. moles Hance group (30 g/kg), moderate-dose A. mollis Hance group (20 g/kg) and low-dose A. mollis Hance group (10 g/kg). Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular cells were analyzed by using single cell gel electrophoresis assay, to investigate the effect of A. mollis Hance on DNA in mouse cells. [Result] Compared with positive control group, Tail DNA% and Tail Moment of moose liver, kidney, lung and testicular cells in A. moles Hance groups were significantly lower ( P 〈 0.01 ). Compared with negative control group, Tail DNA% and Tail Moment of mouse liver, kidney, lung and testicular ceils in high-dose A. mollis Hance group were significantly lower ( P 〈 0.01 ), while the other A. mollis Hance groups showed no statistically significant difference ( P 〉0.05 ). [ Conclusion] A. mollis Hance has no damage effect on DNA in mouse cells within this experimental dose range.