Solar-driven CO_(2) reduction is an efficient way to convert sustainable solar energy and massive CO_(2) to renewable solar fuels,such as CH_(4),HCOOH,HCHO,and CH_(3)OH,etc.Up to now,significant research efforts have ...Solar-driven CO_(2) reduction is an efficient way to convert sustainable solar energy and massive CO_(2) to renewable solar fuels,such as CH_(4),HCOOH,HCHO,and CH_(3)OH,etc.Up to now,significant research efforts have been devoted to exploring the reaction path and developing the photocatalysts.In heterogeneous photocatalysis,among the semiconductor-based photocatalysts,titania(TiO_(2)),as an inexpensive and practically sustainable metal oxides,remains the most extensively studied photocatalyst over the past decades.In this review,we summarize the most recent advances in the solar-driven CO_(2) reduction using TiO_(2)-based photocatalysts,which include the fabrication of heterojunction,surface functional modification,band structure engineering,and morphology design,aiming to improve the CO_(2) conversion efficiency and selectivity to the desired product.Additionally,photoelectrochemical and photothermal approaches are introduced and the fundamental principles to activate and enhance the performance of TiO_(2) for the specific reaction are discussed.The exploration of the solar-driven approaches and discussion on the underlying mechanism allow the comprehensive understanding of CO_(2) photoreduction,that can lead to a rational design and synthesis of TiO_(2)-based photocatalysts.展开更多
In this paper, we demonstrate a color tunable white organic light-emitting devices (WOLEDs) based on the two complementary color strategies by introducing two-dimensional (2-D) dual periodic gratings. It is possib...In this paper, we demonstrate a color tunable white organic light-emitting devices (WOLEDs) based on the two complementary color strategies by introducing two-dimensional (2-D) dual periodic gratings. It is possible to tune the color in a range between cold-white and warmwhite by simply operating the polarization of polarizer in front of the microstructured WOLEDs. Experimental and numerical results demonstrate that color tunability of the WOLEDs comes from the effect of the 2-D dual periodic gratings by exciting the surface plasmon-polariton (SPP) resonance associated with the cathode/organic interface. The electroluminescence (EL) performance of the WOLEDs have also been improved due to the effective light extraction by excitation and out-coupling of the SPP modes, and a 39.65% enhancement of current efficiency has been obtained compared to the conventional planar devices.展开更多
文摘Solar-driven CO_(2) reduction is an efficient way to convert sustainable solar energy and massive CO_(2) to renewable solar fuels,such as CH_(4),HCOOH,HCHO,and CH_(3)OH,etc.Up to now,significant research efforts have been devoted to exploring the reaction path and developing the photocatalysts.In heterogeneous photocatalysis,among the semiconductor-based photocatalysts,titania(TiO_(2)),as an inexpensive and practically sustainable metal oxides,remains the most extensively studied photocatalyst over the past decades.In this review,we summarize the most recent advances in the solar-driven CO_(2) reduction using TiO_(2)-based photocatalysts,which include the fabrication of heterojunction,surface functional modification,band structure engineering,and morphology design,aiming to improve the CO_(2) conversion efficiency and selectivity to the desired product.Additionally,photoelectrochemical and photothermal approaches are introduced and the fundamental principles to activate and enhance the performance of TiO_(2) for the specific reaction are discussed.The exploration of the solar-driven approaches and discussion on the underlying mechanism allow the comprehensive understanding of CO_(2) photoreduction,that can lead to a rational design and synthesis of TiO_(2)-based photocatalysts.
基金The authors gratefully acknowledge support from the National Basic Research Program of China (973 Program) (No. 2013CBA01700), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61322402, 91233123 and 61177024).
文摘In this paper, we demonstrate a color tunable white organic light-emitting devices (WOLEDs) based on the two complementary color strategies by introducing two-dimensional (2-D) dual periodic gratings. It is possible to tune the color in a range between cold-white and warmwhite by simply operating the polarization of polarizer in front of the microstructured WOLEDs. Experimental and numerical results demonstrate that color tunability of the WOLEDs comes from the effect of the 2-D dual periodic gratings by exciting the surface plasmon-polariton (SPP) resonance associated with the cathode/organic interface. The electroluminescence (EL) performance of the WOLEDs have also been improved due to the effective light extraction by excitation and out-coupling of the SPP modes, and a 39.65% enhancement of current efficiency has been obtained compared to the conventional planar devices.