期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Bounding Topology via Geometry,A-Simple Fundamental Groups
1
作者 xiaochun rong Xuchao Yao 《Communications in Mathematical Research》 CSCD 2020年第4期489-505,共17页
We call a group A-simple,if it has no non-trivial normal abelian subgroup.We will present finiteness results in controlled topology via geometry on manifolds whose fundamental groups are A-simple.
关键词 A-simple fundamental group collapsing with bounded sectional curvature finiteness of fundamental groups and diffeomorphic types.
下载PDF
Ricci曲率以及度量球局部回卷体积有下界的Riemann流形 被引量:1
2
作者 戎小春 《中国科学:数学》 CSCD 北大核心 2018年第6期791-806,共16页
本文是一篇关于Ricci曲率与固定半径度量球的局部回卷体积有下界流形M的近期研究综述.所谓在点x∈M处的度量球B_r(x)的局部回卷体积,是指B_r(x)的(不完备的)万有覆叠上以基本点为中心、r为半径的度量球体积.
关键词 度量Riemann几何 Gromov-Hausdorff收敛 Cheeger-Colding理论 局部回卷体积
原文传递
A generalized π2-diffeomorphism finiteness theorem 被引量:1
3
作者 xiaochun rong Xuchao YAO 《Frontiers of Mathematics in China》 SCIE CSCD 2020年第2期399-418,共20页
Theπ2-diffeomorphism finiteness result of F.Fang-X.Rong and A.Petrunin-W.Tuschmann(independently)asserts that the diffeomorphic types of compact n-manifolds M with vanishing first and second homotopy groups can be bo... Theπ2-diffeomorphism finiteness result of F.Fang-X.Rong and A.Petrunin-W.Tuschmann(independently)asserts that the diffeomorphic types of compact n-manifolds M with vanishing first and second homotopy groups can be bounded above in terms of n,and upper bounds on the absolute value of sectional curvature and diameter of M.In this paper,we will generalize thisπ2-diffeomorphism finiteness by removing the condition thatπ1(M)-0 and asserting the diffeomorphism finiteness on the Riemannian universal cover of M. 展开更多
关键词 Collapsing with bounded sectional curvature diffeomorphism finiteness vanishing second homotopy group
原文传递
Topics in Metric Riemannian Geometry
4
作者 Fuquan FANG xiaochun rong +1 位作者 Wilderich TUSCHMANN Yihu YANG 《Frontiers of Mathematics in China》 SCIE CSCD 2016年第5期1097-1098,共2页
It is our great pleasure to present the proceedings of the first Chinese-German Workshop on Metric Riemannian Geometry, which took place at Shanghai Jiao Tong University from October 12-16, 2015.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部