Background The well-known ‘pyrotherapy’ of Julius Wagner-Jauregg might be the beginning of the study on the immunological concepts of schizophrenia. As the primary immune effector cells in the brain, microglia play...Background The well-known ‘pyrotherapy’ of Julius Wagner-Jauregg might be the beginning of the study on the immunological concepts of schizophrenia. As the primary immune effector cells in the brain, microglia play a pivotal role in neuroinfammatory processes. Maternal viral infection during pregnancy is associated with an increased risk for psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The present study was to quantify microglia activation in vivo in the mature offspring of rats exposed to polyriboinosinic–polyribocytidilicacid (Poly I:C) during pregnancy using ^11C-PK11195 positron emission tomography (PET) and immunohistochemistry.Objective The study aimed to quantify microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats.Methods Offspring of Poly I:C-treated dams were the model group, offspring of saline-treated dams were the control group. Behavioural test for two groups was taken by spontaneous activity, prepulse inhibition (PPI) and latent inhibition (LI) test (including active avoidance conditioning task and passive avoidance conditioning task). Randomly selected successful model rats were assessed by behavioural test in the model group and control group rats. 11C-PK11195 micro-PET/CT and immunohistochemistry were performed on the selected rats to measure microglia activation.Results The treatment group showed hyperlocomotion and defcits in PPI and LI compared with the control group. The treatment group also showed an increased 11C-PK11195 uptake ratio in the prefrontal cortex (t=-3.990, p=0.003) and hippocampus (t=-4.462, p=0.001). The number of activated microglia cells was signifcantly higher in the treatment group than in the control group (hippocampus: t=8.204, p〈0.001; prefrontal: t=6.995, p〈0.001). Within the treatment group, there were signifcant correlations between the behavioural parameters and the activation of microglia as measured by PET and immunohistochemistry.Conclusions The present study demonstrated microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats. This study suggests that microglia activation may play a possible or potential role in the pathogenesis of schizophrenia.展开更多
基金provided by the National Natural Science Foundation of China(No 81571318 to XQSNo 81371472 to LXL+5 种基金No 81401110 to XL)the Science and Technology Planning Project of Health and Family Planning Commission(No 201501015 to XQS)the International Science and Technology Cooperation Program of Henan(No 162102410061 to XQS)the Henan Province Union Fund Project(162300410275)the Zhengzhou University doctor team projectthe Youth Fund of the First Affiliated Hospital of Zhengzhou University(to XL and LJP)
文摘Background The well-known ‘pyrotherapy’ of Julius Wagner-Jauregg might be the beginning of the study on the immunological concepts of schizophrenia. As the primary immune effector cells in the brain, microglia play a pivotal role in neuroinfammatory processes. Maternal viral infection during pregnancy is associated with an increased risk for psychiatric disorders with presumed neurodevelopmental origin, including autism spectrum disorders and schizophrenia. The present study was to quantify microglia activation in vivo in the mature offspring of rats exposed to polyriboinosinic–polyribocytidilicacid (Poly I:C) during pregnancy using ^11C-PK11195 positron emission tomography (PET) and immunohistochemistry.Objective The study aimed to quantify microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats.Methods Offspring of Poly I:C-treated dams were the model group, offspring of saline-treated dams were the control group. Behavioural test for two groups was taken by spontaneous activity, prepulse inhibition (PPI) and latent inhibition (LI) test (including active avoidance conditioning task and passive avoidance conditioning task). Randomly selected successful model rats were assessed by behavioural test in the model group and control group rats. 11C-PK11195 micro-PET/CT and immunohistochemistry were performed on the selected rats to measure microglia activation.Results The treatment group showed hyperlocomotion and defcits in PPI and LI compared with the control group. The treatment group also showed an increased 11C-PK11195 uptake ratio in the prefrontal cortex (t=-3.990, p=0.003) and hippocampus (t=-4.462, p=0.001). The number of activated microglia cells was signifcantly higher in the treatment group than in the control group (hippocampus: t=8.204, p〈0.001; prefrontal: t=6.995, p〈0.001). Within the treatment group, there were signifcant correlations between the behavioural parameters and the activation of microglia as measured by PET and immunohistochemistry.Conclusions The present study demonstrated microglia activation in vivo in the prefrontal cortex and hippocampus in mature offspring of prenatal Poly I:C exposed rats. This study suggests that microglia activation may play a possible or potential role in the pathogenesis of schizophrenia.