N-type Se&Lu-codoped Bi2Te3 nanopowders were prepared by hydrothermal method and sintered by spark plasma sintering technology to form dense samples.By further doping Se element into Lu-doped Bi2Te3 samples,the th...N-type Se&Lu-codoped Bi2Te3 nanopowders were prepared by hydrothermal method and sintered by spark plasma sintering technology to form dense samples.By further doping Se element into Lu-doped Bi2Te3 samples,the thickness of the nanosheets has the tendency to become thinner.The electrical conductivity of Lu0.1Bi1.9Te3−xSex material is reduced with the increasing Se content due to the reduced carrier concentration,while the Seeback coefficient values are enhanced.The lattice thermal conductivity of the Lu0.1Bi1.9Te3−xSex is greatly reduced due to the introduced point defects and atomic mass fluctuation.Finally,the Lu0.1Bi1.9Te2.7Se0.3 sample obtained a maximum ZT value of 0.85 at 420 K.This study provides a low-cost and simple low-temperature method to mass production of Se&Lu-codoped Bi2Te3 with high thermoelectric performance for practical applications.展开更多
A broad tunability of the thermoelectric and mechanical properties of CoSb_(3) has been demonstrated by adjusting the composition with the addition of an increasing number of elements.However,such a strategy may negat...A broad tunability of the thermoelectric and mechanical properties of CoSb_(3) has been demonstrated by adjusting the composition with the addition of an increasing number of elements.However,such a strategy may negatively impact processing repeatability and composition control.In this work,singleelement-filled skutterudite is engineered to have high thermoelectric and mechanical performances.Increased Yb filling fraction is found to increase phonon scattering,whereas cryogenic grinding contributes additional microstructural scattering.A peak zT of 1.55 and an average zT of about 1.09,which is comparable to the reported results of multiple-filled SKDs,are realized by the combination of simple composition and microstructure engineering.Furthermore,the mechanical properties of Yb single-filled CoSb_(3) skutterudite are improved by manipulation of the microstructure through cryogenic grinding.These findings highlight the realistic prospect of producing high-performance thermoelectric materials with reduced compositional complexity.展开更多
Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate...Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate the temperature dependent thermoelectric properties.The highest ZT value can be obtained at 450 K for 1 vol%Cu@Ag/Bi2Te3,which is benefited from the decoupling of electrical and thermal properties.With the increase of electrical conductivity,the absolute value of Seebeck coefficient lifts while the thermal conductivity declines.Meanwhile,the average ZT value between 300 K and 475 K was 0.61 for 1 vol%Cu@Ag/Bi2Te3,which is much higher than that of pristine Bi2 Te3.Therefore,the decoupling effect of Cu@Ag nanoparticles incorporation could be a promising method to broaden the application of Bi2Te3 based thermoelectric materials.展开更多
基金This work was funded by the Fundamental Research Funds for the Central Universities(No.2232020A-02)National Natural Science Foundation of China(Nos.51774096,51871053,51902333)+3 种基金Shanghai Committee of Science and Technology(18JC1411200)Program for Innovative Research Team in University of Ministry of Education of China(IRT_16R13)Q.Zhang acknowledges financial support sponsored by Shanghai Saiiling Program(19YF1454000)Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-JSC037).
文摘N-type Se&Lu-codoped Bi2Te3 nanopowders were prepared by hydrothermal method and sintered by spark plasma sintering technology to form dense samples.By further doping Se element into Lu-doped Bi2Te3 samples,the thickness of the nanosheets has the tendency to become thinner.The electrical conductivity of Lu0.1Bi1.9Te3−xSex material is reduced with the increasing Se content due to the reduced carrier concentration,while the Seeback coefficient values are enhanced.The lattice thermal conductivity of the Lu0.1Bi1.9Te3−xSex is greatly reduced due to the introduced point defects and atomic mass fluctuation.Finally,the Lu0.1Bi1.9Te2.7Se0.3 sample obtained a maximum ZT value of 0.85 at 420 K.This study provides a low-cost and simple low-temperature method to mass production of Se&Lu-codoped Bi2Te3 with high thermoelectric performance for practical applications.
基金funded by Natural Science Foundation of China(Nos.51774096,51871053)Shanghai Committee of Science and Technology(Nos.16JC1401800,18JC1411200)+1 种基金supported by the NASA Science Missions Directorate under the Radioisotope Power Systems Programsupport from the National Science Foundation(DMREF-1333335 and DMREF-1729487).
文摘A broad tunability of the thermoelectric and mechanical properties of CoSb_(3) has been demonstrated by adjusting the composition with the addition of an increasing number of elements.However,such a strategy may negatively impact processing repeatability and composition control.In this work,singleelement-filled skutterudite is engineered to have high thermoelectric and mechanical performances.Increased Yb filling fraction is found to increase phonon scattering,whereas cryogenic grinding contributes additional microstructural scattering.A peak zT of 1.55 and an average zT of about 1.09,which is comparable to the reported results of multiple-filled SKDs,are realized by the combination of simple composition and microstructure engineering.Furthermore,the mechanical properties of Yb single-filled CoSb_(3) skutterudite are improved by manipulation of the microstructure through cryogenic grinding.These findings highlight the realistic prospect of producing high-performance thermoelectric materials with reduced compositional complexity.
基金funded by the National Natural Science Foundation of China(Nos.51774096,51871053)Shanghai Committee of Science and Technology(Nos.16JC1401800,18JC1411200)+1 种基金the Fundamental Research Funds for the Central Universities(No.19D110625)Program of Innovative Research Team in University of Ministry of Education of China(No.IRT16R13)。
文摘Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate the temperature dependent thermoelectric properties.The highest ZT value can be obtained at 450 K for 1 vol%Cu@Ag/Bi2Te3,which is benefited from the decoupling of electrical and thermal properties.With the increase of electrical conductivity,the absolute value of Seebeck coefficient lifts while the thermal conductivity declines.Meanwhile,the average ZT value between 300 K and 475 K was 0.61 for 1 vol%Cu@Ag/Bi2Te3,which is much higher than that of pristine Bi2 Te3.Therefore,the decoupling effect of Cu@Ag nanoparticles incorporation could be a promising method to broaden the application of Bi2Te3 based thermoelectric materials.