Generative AI technology for human-assisted tools has made great strides in recent years,and studying the impact of this technology on students'compositional abilities plays an important role in promoting changes ...Generative AI technology for human-assisted tools has made great strides in recent years,and studying the impact of this technology on students'compositional abilities plays an important role in promoting changes in music education.Previous studies have focused on the performance of music composition software itself in terms of composition,with less consideration given to the impact of creators'compositional ability after using assistive composition tools.Thus,this paper designs a controlled experiment to investigate the changes in students'compositional ability before and after using AI composition tools.This paper finds that students'compositional abilities in all areas of composition improved to varying degrees after using AI composition tools.This paper compares the differences in compositional abilities of students with and without the education of AI composition tools,which has practical implications for vigorously promoting the adoption of AI composition tools in university music education teaching.展开更多
The utilization of optimal orthodontic force is crucial to prevent undesirable side effects and ensure efficient tooth movement during orthodontic treatment.However,the sensitivity of existing detection techniques is ...The utilization of optimal orthodontic force is crucial to prevent undesirable side effects and ensure efficient tooth movement during orthodontic treatment.However,the sensitivity of existing detection techniques is not sufficient,and the criteria for evaluating optimal force have not been yet established.Here,by employing 3D finite element analysis methodology,we found that the apical distal region(A-D region)of mesial roots is particularly sensitive to orthodontic force in rats.Tartrate-resistant acidic phosphatase(TRAP)-positive osteoclasts began accumulating in the A-D region under the force of 40 grams(g),leading to alveolar bone resorption and tooth movement.When the force reached 80 g,TRAP-positive osteoclasts started appearing on the root surface in the A-D region.Additionally,micro-computed tomography revealed a significant root resorption at 80 g.Notably,the A-D region was identified as a major contributor to whole root resorption.It was determined that 40 g is the minimum effective force for tooth movement with minimal side effects according to the analysis of tooth movement,inclination,and hyalinization.These findings suggest that the A-D region with its changes on the root surface is an important consideration and sensitive indicator when evaluating orthodontic forces for a rat model.Collectively,our investigations into this region would aid in offering valuable implications for preventing and minimizing root resorption during patients’orthodontic treatment.展开更多
Multicellular layers(MCLs) have previously been used to determine the pharmacokinetics of a variety of different cancer drugs including paclitaxel, doxorubicin, methotrexate, and 5-fluorouracil across a number of cell...Multicellular layers(MCLs) have previously been used to determine the pharmacokinetics of a variety of different cancer drugs including paclitaxel, doxorubicin, methotrexate, and 5-fluorouracil across a number of cell lines. It is not known how nanoparticles(NPs) navigate through the tumor microenvironment once they leave the tumor blood vessel.In this study, we used the MCL model to study the uptake and penetration dynamics of NPs. Gold nanoparticles(GNPs)were used as a model system to map the NP distribution within tissue-like structures. Our results show that NP uptake and transport are dependent on the tumor cell type. MDA-MB-231 tissue showed deeper penetration of GNPs as compared to MCF-7 one. Intracellular and extracellular distributions of NPs were mapped using Cyto Viva imaging. The ability of MCLs to mimic tumor tissue characteristics makes them a useful tool in assessing the efficacy of particle distribution in solid tumors.展开更多
A novel method for modeling cellular materials is proposed based on MATLAB image processing and synchrotron X-ray computed tomography scan- ning to obtain an accurate calculation result of aluminum foam based on finit...A novel method for modeling cellular materials is proposed based on MATLAB image processing and synchrotron X-ray computed tomography scan- ning to obtain an accurate calculation result of aluminum foam based on finite element model. The maximum entropy algorithm is employed to obtain the bina- rization image, and the median filtering algorithm is used to reduce the noise after binarization. The external contour and internal pores boundary is extracted by the "edge" function in MATLAB, and the geometrical model is reconstructed. A two-step mesh algorithm is adopted to mesh the reconstructed geometrical model. Accordingly, the finite element model of aluminum foam is established by the proposed method based on reconstruction geometrical model. The compression behavior of aluminum foam is obtained at 25℃, 100℃, 200℃ by ABAQUS, and good agreements with experiments are achieved by applying the present recon- struction algorithm and modeling method.展开更多
Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficienc...Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),electrocatalysts are usually essential to reduce their kinetic energy barriers.Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation,large specific surface area,and the possibilities of flexibility with the porous feature,which are good candidates as efficient electrocatalysts for water splitting.In this review,we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER,OER,and overall water splitting reaction.Specifically,the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted.Furthermore,the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured.Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts,full utilization of these materials for practical energy conversion is anticipated.展开更多
Gold nanoparticles(GNPs) are emerging as a novel tool to improve existing cancer therapeutics. GNPs are being used as radiation dose enhancers in radiation therapy as well as anticancer drugs carriers in chemotherapy....Gold nanoparticles(GNPs) are emerging as a novel tool to improve existing cancer therapeutics. GNPs are being used as radiation dose enhancers in radiation therapy as well as anticancer drugs carriers in chemotherapy. However,the success of GNP-based therapeutics depends on their ability to penetrate tumor tissue. GNPs of 20 and 50 nm diameters were used to elucidate the effects of size on the GNP interaction with tumor cells at monolayer and multilayer level. At monolayer cell level, smaller NPs had a lower uptake compared to larger NPs at monolayer cell level. However, the order was reversed at tissue-like multilayer level. The smaller NPs penetrated better compared to larger NPs in tissue-like materials.Based on our study using tissue-like materials, we can predict that the smaller NPs are better for future therapeutics due to their greater penetration in tumor tissue once leaving the leaky blood vessels. In this study, tissue-like multilayer cellular structures(MLCs) were grown to model the post-vascular tumor environment. The MLCs exhibited a much more extensive extracellular matrix than monolayer cell cultures. The MLC model can be used to optimize the nano–micro interface at tissue level before moving into animal models. This would accelerate the use of NPs in future cancer therapeutics.展开更多
Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However,...Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells(BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1(CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein(BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.展开更多
Anodic oxygen evolution reaction(OER)is essential to participate in diverse renewable energy conversion and storage processes,while most OER electrocatalysts present satisfactory catalytic performance in only alkaline...Anodic oxygen evolution reaction(OER)is essential to participate in diverse renewable energy conversion and storage processes,while most OER electrocatalysts present satisfactory catalytic performance in only alkaline or acidic medium,limiting their practical applications in many aspects.Herein,we have designed and prepared Ir-CeO_(2)-C nanofibers(NFs)via an electrospinning and a relatively low-temperature calcination strategy for OER application in both alkaline and acidic conditions.Density functional theory(DFT)simulations demonstrate the high catalytic active sites of Ir atoms for OER,that the formation of Ir–O bonds at the interface between Ir and CeO_(2)can modulate the electron density of the relevant Ir atoms to promote the OER activity.In addition,the unique nanofibrous heterostructure increases the exposed active sites and promotes the electrical conductivity.Therefore,the prepared Ir-CeO_(2)-C nanofibrous catalyst delivers an excellent OER property in both alkaline and acidic solutions.Impressively,the overpotentials to reach 10 mA·cm^(−2)are only 279 and 283 mV in the alkaline and acidic electrolyte,respectively,with favorable long-term stabilities.In addition,the two-electrode overall water splitting set-ups equipped with Ir-CeO_(2)-C NFs as anode and commercial Pt/C as cathode provide a cell voltage of 1.54 and 1.53 V to drive 10 mA·cm^(−2)in the alkaline and acidic electrolyte,respectively,which are much lower than Pt/C||IrO_(2)and lots of transition metal oxides-based electrolyzers.This research presents an efficient means to design OER catalysts with superior properties in both alkaline and acidic solutions.展开更多
The dispersion characteristics of fuel particles in the dense phase zone in circulating fluidized bed(CFB)boilers have an important influence on bed temperature distribution and pollutant emissions.However,previous re...The dispersion characteristics of fuel particles in the dense phase zone in circulating fluidized bed(CFB)boilers have an important influence on bed temperature distribution and pollutant emissions.However,previous research in literature was mostly on small-scale apparatus,whose results could not be applied directly to large-scale CFB with multiple dispersion sources.To help solve this problem,we proposed a novel method to estimate the lateral dispersion coefficient(Dx)of fuel particles under partial coal cut-off condition in a 35o MW supercritical CFB boiler based on combustion and dispersion models.Meanwhile,we carried out experiments to obtain the Dx in the range of 0.1218-0.1406 m2/s.Numerical simulations were performed and the influence of operating conditions and furnace structure on fuel dispersion characteristics was investigated,the simulation value of Dx was validated against experimental data.Results revealed that the distribution of bed temperature caused by the fuel dispersion was mainly formed by char combustion.Because of the presence of intermediate water-cooled partition wall,the mixing and dispersion of fuel and bed material particles between the left and right sides of the furnace were hindered,increasing the non-uniformity of the bed temperature near furnace front wall.展开更多
Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network....Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.展开更多
It is essential to develop efficient electrocatalysts to generate hydrogen from water electrolysis for hydrogen economy. In this work, platinum(Pt) and nickel(Ni) co-doped porous carbon nanofibers(Pt/NiPCNFs) with low...It is essential to develop efficient electrocatalysts to generate hydrogen from water electrolysis for hydrogen economy. In this work, platinum(Pt) and nickel(Ni) co-doped porous carbon nanofibers(Pt/NiPCNFs) with low Pt content were prepared via an electrospinning, carbonization and galvanic replacement reaction. Because of the high electrical conductivity, abundant electrochemical active sites and synergistic effect between Pt and Ni nanoparticles, the optimized Pt/Ni-PCNFs catalyst shows an excellent HER activity with overpotentials of 20 m V in 0.5 mol/L H_(2)SO_(4) and 46 m V in 1 mol/L KOH at a current density of10 m A/cm^(2). Furthermore, over 35-h long-term stability has been achieved without significant attenuation.This work provides a simple route to prepare highly efficient electrocatalysts for water splitting and has great prospects in the field of renewable energy.展开更多
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to tur...In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.展开更多
The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%...The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.展开更多
Background:China bears the biggest atrial fibrillation(AF)burden in the world.However,little is known about the incidence and predictors of AF.This study aimed to investigate the current incidence of AF and its electr...Background:China bears the biggest atrial fibrillation(AF)burden in the world.However,little is known about the incidence and predictors of AF.This study aimed to investigate the current incidence of AF and its electrocardiographic(ECG)predictors in general community individuals aged over 60 years in China.Methods:This was a prospective cohort study,recruiting subjects who were aged over 60 years and underwent annual health checkups from April to July 2015 in four community health centers in Songjiang District,Shanghai,China.The subjects were then followed up from 2015 to 2019 annually.Data on sociodemographic characteristics,medical history,and the resting 12-lead ECG were collected.Kaplan–Meier curve was used for showing the trends in AF incidence and calculating the predictors of AF.Associations of ECG abnormalities and AF incidence were examined using Cox proportional hazard models.Results:This study recruited 18,738 subjects,and 351(1.87%)developed AF.The overall incidence rate of AF was 5.2/1000 person-years during an observation period of 67,704 person-years.Multivariable Cox regression analysis indicated age(hazard ratio[HR],1.07;95%confidence interval[CI]:1.06–1.09;P<0.001),male(HR,1.30;95%CI:1.05–1.62;P=0.018),a history of hypertension(HR,1.55;95%CI:1.23–1.95;P<0.001),a history of cardiac diseases(HR,3.23;95%CI:2.34–4.45;P<0.001),atrial premature complex(APC)(HR,2.82;95%CI:2.17–3.68;P<0.001),atrial flutter(HR,18.68;95%CI:7.37–47.31;P<0.001),junctional premature complex(JPC)(HR,3.57;95%CI:1.59–8.02;P=0.002),junctional rhythm(HR,18.24;95%CI:5.83–57.07;P<0.001),ventricular premature complex(VPC)(HR,1.76;95%CI:1.13–2.75,P=0.012),short PR interval(HR,5.49;95%CI:1.36–22.19;P=0.017),right atrial enlargement(HR,6.22;95%CI:1.54–25.14;P=0.010),and pacing rhythm(HR,3.99;95%CI:1.57–10.14;P=0.004)were independently associated with the incidence of AF.Conclusions:The present incidence of AF was 5.2/1000 person-years in the studied population aged over 60 years in China.Among various ECG abnormalities,only APC,atrial flutter,JPC,junctional rhythm,short PR interval,VPC,right atrial enlargement,and pacing rhythm were independently associated with AF incidence.展开更多
Increasing attention is focused on the down-regulation of miRNAs in cancer process. Nuclear receptor subfamily 2 (NR2F2, also known as COUP-TFU) is involved in the development of many types of cancers, but its role ...Increasing attention is focused on the down-regulation of miRNAs in cancer process. Nuclear receptor subfamily 2 (NR2F2, also known as COUP-TFU) is involved in the development of many types of cancers, but its role in gastric cancer remains elusive. In this experiment, oncomine and Kaplan-meier database revealed that NR2F2 was up-regulated in gastric cancer and that the high NR2F2 expression contributed to poor survival. MicroRNA-2Tb was targeted and down-regulated by NR2F2 in human gastric cancer tissues and cells. The ectopic expression of miR-27b inhibited gastric cancer cell proliferation and tumor growth in vitro and in vivo. Assays suggested that the overexpression of miR-27b could promote MGC-803 cells' migration and invasion and retard their metastasis to the liver. In addition, down-regulation of miR-27b enhanced GES-1 cells' proliferation and metastasis in vitro. These findings reveal that miR-27b is a tumor suppressor in gastric cancer and a biomarker for improving patients' survival.展开更多
Pavement roughness is one of the most important factors for appraising highway construction. In this paper, we choose the laser triangulation to measure pavement roughness. The principle and configuration of laser tri...Pavement roughness is one of the most important factors for appraising highway construction. In this paper, we choose the laser triangulation to measure pavement roughness. The principle and configuration of laser triangulation are introduced. Based on this technology, the pavement roughness of a road surface is measured. The measurement results are given in this paper. The measurement range of this system is 50 μm. The measurement error of this technology is analyzed. This technology has an important significance to appraise the quality of highway after completion of the workload.展开更多
The excrescent electromagnetic(EM)radiation exposure in the air threatens human health and electronic equipment due to the abuse of EM waves in wireless telecommunication technology and electronic applications.Consequ...The excrescent electromagnetic(EM)radiation exposure in the air threatens human health and electronic equipment due to the abuse of EM waves in wireless telecommunication technology and electronic applications.Consequently,electromagnetic interference(EMI)shielding materials are provided to solve the EM waves pollution problem.In particular,the appearance of onedimensional(1D)metallic,magnetic,and dielectric nanofillers will extremely reduce the density of EMI composite and enhance EMI protection performance because they can easily assemble to form complete two-dimensional(2D)or three-dimensional(3D)EMI network based on their high aspect ratio,large specific surface area,and additional attenuated sites.This review focuses on the EMI shielding composites with 1D metallic,magnetic,and dielectric nanofillers,which could be constructed in the final form of membrane-or aerogel/sponge-like shielding materials.According to the structural features,1D metallic,magnetic,and dielectric nanofillers are classified into nanowires,nanorods,nanospindles,nanochains,nanofibers,nanotubes,nanorings,nanocoils,and quasi-one-dimensional(1D)van der Waals materials.Accordingly,the fabricated routes,shielding performances,and EM waves attenuation mechanism of the 1D metallic,magnetic,and dielectric nanofiller-based composites are summarized.It is found that the dominant shielding mechanism of most of the 1D metal-based EMI composites is reflection loss,while that of 1D magnetic and dielectric nanomaterials-based EMI composites is absorption loss caused by interfacial polarization,natural resonance,eddy current,and multiple scattering.Finally,the challenges and prospects of 1D nanofiller-based composites with a tunable architecture and composition are put forward,aiming to give a guideline for the next generation of high-performance EMI shielding materials.展开更多
The arylthio-substituted tetrathiafuivalenes (Ar-S-TTFs) are electron donors having three reversible states, neutral, cation radical, and dica- tion. The charge-transfer (CT) between Ar-S-TTFs (TTF1--TTF3) and i...The arylthio-substituted tetrathiafuivalenes (Ar-S-TTFs) are electron donors having three reversible states, neutral, cation radical, and dica- tion. The charge-transfer (CT) between Ar-S-TTFs (TTF1--TTF3) and iodine (12) is reported herein. TTF1--TTF3 show the CT with 12 in the CH2C12 solution, but they are not completely converted into cation radical state. In CT complexes of TTF1--TTF3 with 12, the charged states of Ar-S-TTFs are distinct from those in solution. TTF1 is at cation radical state, and TTF2--TTF3 are oxidized to dication. The iodine components in complexes show various structures including 1-D chain of V-shaped (Is)-, and 2-D and 3-D iodine networks composed of 12 and (13)^- .展开更多
A new cytotoxic salannin-class limonoid alkaloid, azadiramide A(1),was isolated from seeds of Azadirachta indica A. Juss. Its structure was elucidated by extensive analysis of spectroscopic data and quantum chemical...A new cytotoxic salannin-class limonoid alkaloid, azadiramide A(1),was isolated from seeds of Azadirachta indica A. Juss. Its structure was elucidated by extensive analysis of spectroscopic data and quantum chemical calculation. Compound 1 is a rare salannin-class limonoid alkaloid. To our best knowledge, only two compounds belonging to this type were so far found. It showed inhibitory activity against human breast cancer MDA-MB-231 cell line with IC_(50) value of 2.70±0.63 μmol/L.展开更多
文摘Generative AI technology for human-assisted tools has made great strides in recent years,and studying the impact of this technology on students'compositional abilities plays an important role in promoting changes in music education.Previous studies have focused on the performance of music composition software itself in terms of composition,with less consideration given to the impact of creators'compositional ability after using assistive composition tools.Thus,this paper designs a controlled experiment to investigate the changes in students'compositional ability before and after using AI composition tools.This paper finds that students'compositional abilities in all areas of composition improved to varying degrees after using AI composition tools.This paper compares the differences in compositional abilities of students with and without the education of AI composition tools,which has practical implications for vigorously promoting the adoption of AI composition tools in university music education teaching.
基金funded by the National Natural Science Foundation of China for Key Program Projects(No.82030070,to L.C.)Hubei Provincial Natural Science Fund for Creative Research(No.2020CFA014,to L.C.)+1 种基金the National Natural Science Foundation of China(No.82100960,to S.Y.)Chinese Orthodontic Society Basic Research Fund(COS-B2021-01,to M.X.).
文摘The utilization of optimal orthodontic force is crucial to prevent undesirable side effects and ensure efficient tooth movement during orthodontic treatment.However,the sensitivity of existing detection techniques is not sufficient,and the criteria for evaluating optimal force have not been yet established.Here,by employing 3D finite element analysis methodology,we found that the apical distal region(A-D region)of mesial roots is particularly sensitive to orthodontic force in rats.Tartrate-resistant acidic phosphatase(TRAP)-positive osteoclasts began accumulating in the A-D region under the force of 40 grams(g),leading to alveolar bone resorption and tooth movement.When the force reached 80 g,TRAP-positive osteoclasts started appearing on the root surface in the A-D region.Additionally,micro-computed tomography revealed a significant root resorption at 80 g.Notably,the A-D region was identified as a major contributor to whole root resorption.It was determined that 40 g is the minimum effective force for tooth movement with minimal side effects according to the analysis of tooth movement,inclination,and hyalinization.These findings suggest that the A-D region with its changes on the root surface is an important consideration and sensitive indicator when evaluating orthodontic forces for a rat model.Collectively,our investigations into this region would aid in offering valuable implications for preventing and minimizing root resorption during patients’orthodontic treatment.
文摘Multicellular layers(MCLs) have previously been used to determine the pharmacokinetics of a variety of different cancer drugs including paclitaxel, doxorubicin, methotrexate, and 5-fluorouracil across a number of cell lines. It is not known how nanoparticles(NPs) navigate through the tumor microenvironment once they leave the tumor blood vessel.In this study, we used the MCL model to study the uptake and penetration dynamics of NPs. Gold nanoparticles(GNPs)were used as a model system to map the NP distribution within tissue-like structures. Our results show that NP uptake and transport are dependent on the tumor cell type. MDA-MB-231 tissue showed deeper penetration of GNPs as compared to MCF-7 one. Intracellular and extracellular distributions of NPs were mapped using Cyto Viva imaging. The ability of MCLs to mimic tumor tissue characteristics makes them a useful tool in assessing the efficacy of particle distribution in solid tumors.
基金supported by the National Natural Science Foundations of China(11202007,11232001,and 91216301)
文摘A novel method for modeling cellular materials is proposed based on MATLAB image processing and synchrotron X-ray computed tomography scan- ning to obtain an accurate calculation result of aluminum foam based on finite element model. The maximum entropy algorithm is employed to obtain the bina- rization image, and the median filtering algorithm is used to reduce the noise after binarization. The external contour and internal pores boundary is extracted by the "edge" function in MATLAB, and the geometrical model is reconstructed. A two-step mesh algorithm is adopted to mesh the reconstructed geometrical model. Accordingly, the finite element model of aluminum foam is established by the proposed method based on reconstruction geometrical model. The compression behavior of aluminum foam is obtained at 25℃, 100℃, 200℃ by ABAQUS, and good agreements with experiments are achieved by applying the present recon- struction algorithm and modeling method.
基金This study was financially supported by the National Natural Science Foundation of China(51973079,51773075 and 21875084)the Project of Department of Scienceand Technology of Jilin Province,China(20190101013JH).
文摘Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),electrocatalysts are usually essential to reduce their kinetic energy barriers.Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation,large specific surface area,and the possibilities of flexibility with the porous feature,which are good candidates as efficient electrocatalysts for water splitting.In this review,we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER,OER,and overall water splitting reaction.Specifically,the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted.Furthermore,the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured.Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts,full utilization of these materials for practical energy conversion is anticipated.
基金the Natural Sciences and Engineering Research Council of Canada(NSERC)Canadian Foundation for Innovation(CFI)
文摘Gold nanoparticles(GNPs) are emerging as a novel tool to improve existing cancer therapeutics. GNPs are being used as radiation dose enhancers in radiation therapy as well as anticancer drugs carriers in chemotherapy. However,the success of GNP-based therapeutics depends on their ability to penetrate tumor tissue. GNPs of 20 and 50 nm diameters were used to elucidate the effects of size on the GNP interaction with tumor cells at monolayer and multilayer level. At monolayer cell level, smaller NPs had a lower uptake compared to larger NPs at monolayer cell level. However, the order was reversed at tissue-like multilayer level. The smaller NPs penetrated better compared to larger NPs in tissue-like materials.Based on our study using tissue-like materials, we can predict that the smaller NPs are better for future therapeutics due to their greater penetration in tumor tissue once leaving the leaky blood vessels. In this study, tissue-like multilayer cellular structures(MLCs) were grown to model the post-vascular tumor environment. The MLCs exhibited a much more extensive extracellular matrix than monolayer cell cultures. The MLC model can be used to optimize the nano–micro interface at tissue level before moving into animal models. This would accelerate the use of NPs in future cancer therapeutics.
基金funded by the National Key Research and Development Program of China(2021YFC2400404,to L.C.)the Key Program of National Natural Science of China(82030070,to L.C.)+1 种基金the National Science Foundation for Excellent Young Scholars of China(31725011,to L.C.)the Youth Clinical Research Fund of Chinese Stomatological Association(CSA-O2020-10,to Q.T.)。
文摘Bone regeneration remains a great clinical challenge. Low intensity near-infrared(NIR) light showed strong potential to promote tissue regeneration, offering a promising strategy for bone defect regeneration. However, the effect and underlying mechanism of NIR on bone regeneration remain unclear. We demonstrated that bone regeneration in the rat skull defect model was significantly accelerated with low-intensity NIR stimulation. In vitro studies showed that NIR stimulation could promote the osteoblast differentiation in bone mesenchymal stem cells(BMSCs) and MC3T3-E1 cells, which was associated with increased ubiquitination of the core circadian clock protein Cryptochrome 1(CRY1) in the nucleus. We found that the reduction of CRY1 induced by NIR light activated the bone morphogenetic protein(BMP) signaling pathways, promoting SMAD1/5/9 phosphorylation and increasing the expression levels of Runx2 and Osterix. NIR light treatment may act through sodium voltage-gated channel Scn4a, which may be a potential responder of NIR light to accelerate bone regeneration. Together, these findings suggest that low-intensity NIR light may promote in situ bone regeneration in a CRY1-dependent manner, providing a novel, efficient and non-invasive strategy to promote bone regeneration for clinical bone defects.
基金the National Natural Science Foundation of China(Nos.51973079 and 21673093)the Natural Science Foundation of Fujian Province(No.2020J01147)+1 种基金Research Foundation of Academy of Carbon Neutrality of Fujian Normal University(No.TZH2022-05)Minjiang Scholar and Startup Fund for High-level Talent at Fujian Normal University.
文摘Anodic oxygen evolution reaction(OER)is essential to participate in diverse renewable energy conversion and storage processes,while most OER electrocatalysts present satisfactory catalytic performance in only alkaline or acidic medium,limiting their practical applications in many aspects.Herein,we have designed and prepared Ir-CeO_(2)-C nanofibers(NFs)via an electrospinning and a relatively low-temperature calcination strategy for OER application in both alkaline and acidic conditions.Density functional theory(DFT)simulations demonstrate the high catalytic active sites of Ir atoms for OER,that the formation of Ir–O bonds at the interface between Ir and CeO_(2)can modulate the electron density of the relevant Ir atoms to promote the OER activity.In addition,the unique nanofibrous heterostructure increases the exposed active sites and promotes the electrical conductivity.Therefore,the prepared Ir-CeO_(2)-C nanofibrous catalyst delivers an excellent OER property in both alkaline and acidic solutions.Impressively,the overpotentials to reach 10 mA·cm^(−2)are only 279 and 283 mV in the alkaline and acidic electrolyte,respectively,with favorable long-term stabilities.In addition,the two-electrode overall water splitting set-ups equipped with Ir-CeO_(2)-C NFs as anode and commercial Pt/C as cathode provide a cell voltage of 1.54 and 1.53 V to drive 10 mA·cm^(−2)in the alkaline and acidic electrolyte,respectively,which are much lower than Pt/C||IrO_(2)and lots of transition metal oxides-based electrolyzers.This research presents an efficient means to design OER catalysts with superior properties in both alkaline and acidic solutions.
基金supported by the National Natural Science Foundation of China(grant No.52176101).
文摘The dispersion characteristics of fuel particles in the dense phase zone in circulating fluidized bed(CFB)boilers have an important influence on bed temperature distribution and pollutant emissions.However,previous research in literature was mostly on small-scale apparatus,whose results could not be applied directly to large-scale CFB with multiple dispersion sources.To help solve this problem,we proposed a novel method to estimate the lateral dispersion coefficient(Dx)of fuel particles under partial coal cut-off condition in a 35o MW supercritical CFB boiler based on combustion and dispersion models.Meanwhile,we carried out experiments to obtain the Dx in the range of 0.1218-0.1406 m2/s.Numerical simulations were performed and the influence of operating conditions and furnace structure on fuel dispersion characteristics was investigated,the simulation value of Dx was validated against experimental data.Results revealed that the distribution of bed temperature caused by the fuel dispersion was mainly formed by char combustion.Because of the presence of intermediate water-cooled partition wall,the mixing and dispersion of fuel and bed material particles between the left and right sides of the furnace were hindered,increasing the non-uniformity of the bed temperature near furnace front wall.
基金the financial support of National Natural Science Foundation of China(NSFC),Grant No.61971102,61871076the Key Research and Development Program of Zhejiang Province under Grant No.2022C01093.
文摘Activating Wireless Power Transfer (WPT) in Radio-Frequency (RF) to provide on-demand energy supply to widely deployed Internet of Everything devices is a key to the next-generation energy self-sustainable 6G network. However, Simultaneous Wireless Information and Power Transfer (SWIPT) in the same RF bands is challenging. The majority of previous studies compared SWIPT performance to Gaussian signaling with an infinite alphabet, which is impossible to implement in any realistic communication system. In contrast, we study the SWIPT system in a well-known Nakagami-m wireless fading channel using practical modulation techniques with finite alphabet. The attainable rate-energy-reliability tradeoff and the corresponding rationale are revealed for fixed modulation schemes. Furthermore, an adaptive modulation-based transceiver is provided for further expanding the attainable rate-energy-reliability region based on various SWIPT performances of different modulation schemes. The modulation switching thresholds and transmit power allocation at the SWIPT transmitter and the power splitting ratios at the SWIPT receiver are jointly optimized to maximize the attainable spectrum efficiency of wireless information transfer while satisfying the WPT requirement and the instantaneous and average BER constraints. Numerical results demonstrate the SWIPT performance of various fixed modulation schemes in different fading conditions. The advantage of the adaptive modulation-based SWIPT transceiver is validated.
基金financially supported by the National Natural Science Foundation of China (Nos. 5197307, 219875084)the Project of the Education Department of Jilin Province, China (No. JJKH20211047KJ)。
文摘It is essential to develop efficient electrocatalysts to generate hydrogen from water electrolysis for hydrogen economy. In this work, platinum(Pt) and nickel(Ni) co-doped porous carbon nanofibers(Pt/NiPCNFs) with low Pt content were prepared via an electrospinning, carbonization and galvanic replacement reaction. Because of the high electrical conductivity, abundant electrochemical active sites and synergistic effect between Pt and Ni nanoparticles, the optimized Pt/Ni-PCNFs catalyst shows an excellent HER activity with overpotentials of 20 m V in 0.5 mol/L H_(2)SO_(4) and 46 m V in 1 mol/L KOH at a current density of10 m A/cm^(2). Furthermore, over 35-h long-term stability has been achieved without significant attenuation.This work provides a simple route to prepare highly efficient electrocatalysts for water splitting and has great prospects in the field of renewable energy.
基金the financial support of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA07030100)the Technology Planning Project of Jiangxi Province(No.20122BBG70087)financial contributions from the Chongqing Science and Technology Commission(No.2011AC4068)
文摘In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51706028)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(Grant No.2017-K01)+1 种基金the Joint Grants Scheme of Shanxi Province and National Science Foundation of China(Key Applied Projects U1610254)the Australia Research Council under the ARC Linkage Projects Scheme(Project No.LP100200135).
文摘The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD.
基金supported by the General Program of the National Natural Science Foundation of China(No.81970273),the Youth Program of the National Natural Science Foundation of China(Nos.81300137 and 82000332).
文摘Background:China bears the biggest atrial fibrillation(AF)burden in the world.However,little is known about the incidence and predictors of AF.This study aimed to investigate the current incidence of AF and its electrocardiographic(ECG)predictors in general community individuals aged over 60 years in China.Methods:This was a prospective cohort study,recruiting subjects who were aged over 60 years and underwent annual health checkups from April to July 2015 in four community health centers in Songjiang District,Shanghai,China.The subjects were then followed up from 2015 to 2019 annually.Data on sociodemographic characteristics,medical history,and the resting 12-lead ECG were collected.Kaplan–Meier curve was used for showing the trends in AF incidence and calculating the predictors of AF.Associations of ECG abnormalities and AF incidence were examined using Cox proportional hazard models.Results:This study recruited 18,738 subjects,and 351(1.87%)developed AF.The overall incidence rate of AF was 5.2/1000 person-years during an observation period of 67,704 person-years.Multivariable Cox regression analysis indicated age(hazard ratio[HR],1.07;95%confidence interval[CI]:1.06–1.09;P<0.001),male(HR,1.30;95%CI:1.05–1.62;P=0.018),a history of hypertension(HR,1.55;95%CI:1.23–1.95;P<0.001),a history of cardiac diseases(HR,3.23;95%CI:2.34–4.45;P<0.001),atrial premature complex(APC)(HR,2.82;95%CI:2.17–3.68;P<0.001),atrial flutter(HR,18.68;95%CI:7.37–47.31;P<0.001),junctional premature complex(JPC)(HR,3.57;95%CI:1.59–8.02;P=0.002),junctional rhythm(HR,18.24;95%CI:5.83–57.07;P<0.001),ventricular premature complex(VPC)(HR,1.76;95%CI:1.13–2.75,P=0.012),short PR interval(HR,5.49;95%CI:1.36–22.19;P=0.017),right atrial enlargement(HR,6.22;95%CI:1.54–25.14;P=0.010),and pacing rhythm(HR,3.99;95%CI:1.57–10.14;P=0.004)were independently associated with the incidence of AF.Conclusions:The present incidence of AF was 5.2/1000 person-years in the studied population aged over 60 years in China.Among various ECG abnormalities,only APC,atrial flutter,JPC,junctional rhythm,short PR interval,VPC,right atrial enlargement,and pacing rhythm were independently associated with AF incidence.
文摘Increasing attention is focused on the down-regulation of miRNAs in cancer process. Nuclear receptor subfamily 2 (NR2F2, also known as COUP-TFU) is involved in the development of many types of cancers, but its role in gastric cancer remains elusive. In this experiment, oncomine and Kaplan-meier database revealed that NR2F2 was up-regulated in gastric cancer and that the high NR2F2 expression contributed to poor survival. MicroRNA-2Tb was targeted and down-regulated by NR2F2 in human gastric cancer tissues and cells. The ectopic expression of miR-27b inhibited gastric cancer cell proliferation and tumor growth in vitro and in vivo. Assays suggested that the overexpression of miR-27b could promote MGC-803 cells' migration and invasion and retard their metastasis to the liver. In addition, down-regulation of miR-27b enhanced GES-1 cells' proliferation and metastasis in vitro. These findings reveal that miR-27b is a tumor suppressor in gastric cancer and a biomarker for improving patients' survival.
文摘Pavement roughness is one of the most important factors for appraising highway construction. In this paper, we choose the laser triangulation to measure pavement roughness. The principle and configuration of laser triangulation are introduced. Based on this technology, the pavement roughness of a road surface is measured. The measurement results are given in this paper. The measurement range of this system is 50 μm. The measurement error of this technology is analyzed. This technology has an important significance to appraise the quality of highway after completion of the workload.
基金supported by the research grants from the National Natural Science Foundation of China(No.21875084).
文摘The excrescent electromagnetic(EM)radiation exposure in the air threatens human health and electronic equipment due to the abuse of EM waves in wireless telecommunication technology and electronic applications.Consequently,electromagnetic interference(EMI)shielding materials are provided to solve the EM waves pollution problem.In particular,the appearance of onedimensional(1D)metallic,magnetic,and dielectric nanofillers will extremely reduce the density of EMI composite and enhance EMI protection performance because they can easily assemble to form complete two-dimensional(2D)or three-dimensional(3D)EMI network based on their high aspect ratio,large specific surface area,and additional attenuated sites.This review focuses on the EMI shielding composites with 1D metallic,magnetic,and dielectric nanofillers,which could be constructed in the final form of membrane-or aerogel/sponge-like shielding materials.According to the structural features,1D metallic,magnetic,and dielectric nanofillers are classified into nanowires,nanorods,nanospindles,nanochains,nanofibers,nanotubes,nanorings,nanocoils,and quasi-one-dimensional(1D)van der Waals materials.Accordingly,the fabricated routes,shielding performances,and EM waves attenuation mechanism of the 1D metallic,magnetic,and dielectric nanofiller-based composites are summarized.It is found that the dominant shielding mechanism of most of the 1D metal-based EMI composites is reflection loss,while that of 1D magnetic and dielectric nanomaterials-based EMI composites is absorption loss caused by interfacial polarization,natural resonance,eddy current,and multiple scattering.Finally,the challenges and prospects of 1D nanofiller-based composites with a tunable architecture and composition are put forward,aiming to give a guideline for the next generation of high-performance EMI shielding materials.
文摘The arylthio-substituted tetrathiafuivalenes (Ar-S-TTFs) are electron donors having three reversible states, neutral, cation radical, and dica- tion. The charge-transfer (CT) between Ar-S-TTFs (TTF1--TTF3) and iodine (12) is reported herein. TTF1--TTF3 show the CT with 12 in the CH2C12 solution, but they are not completely converted into cation radical state. In CT complexes of TTF1--TTF3 with 12, the charged states of Ar-S-TTFs are distinct from those in solution. TTF1 is at cation radical state, and TTF2--TTF3 are oxidized to dication. The iodine components in complexes show various structures including 1-D chain of V-shaped (Is)-, and 2-D and 3-D iodine networks composed of 12 and (13)^- .
基金supported by grants from Thousand Young Talents Program of China and the National Natural Science Foundation of China (No. 81673530)
文摘A new cytotoxic salannin-class limonoid alkaloid, azadiramide A(1),was isolated from seeds of Azadirachta indica A. Juss. Its structure was elucidated by extensive analysis of spectroscopic data and quantum chemical calculation. Compound 1 is a rare salannin-class limonoid alkaloid. To our best knowledge, only two compounds belonging to this type were so far found. It showed inhibitory activity against human breast cancer MDA-MB-231 cell line with IC_(50) value of 2.70±0.63 μmol/L.