Background:Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic liver diseases globally.Hepatic stellate cells(HSCs)are the major effector cells of liver fibrosis.HSCs contain abundant lipid drople...Background:Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic liver diseases globally.Hepatic stellate cells(HSCs)are the major effector cells of liver fibrosis.HSCs contain abundant lipid droplets(LDs)in their cytoplasm during quiescence.Perilipin 5(PLIN 5)is a LD surface-associated protein that plays a crucial role in lipid homeostasis.However,little is known about the role of PLIN 5 in HSC activation.Methods:PLIN 5 was overexpressed in HSCs of Sprague–Dawley rats by lentivirus transfection.At the same time,PLIN 5 gene knockout mice were constructed and fed with a high-fat diet(HFD)for 20 weeks to study the role of PLIN 5 in NAFLD.The corresponding reagent kits were used to measure TG,GSH,Caspase 3 activity,ATP level,and mitochondrial DNA copy number.Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS.AMPK,mitochondrial function,cell proliferation,and apoptosis-related genes and proteins were detected by western blotting and qPCR.Results:Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria,inhibition of cell proliferation,and a significant increase in cell apoptosis through AMPK activation.In addition,compared with the HFD-fed C57BL/6J mice,PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition,decreased LD abundance and size,and reduced liver fibrosis.Conclusion:These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.展开更多
Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibi...Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibit cell motility in malignant tumors,including breast cancer.However,the specific targets and the corresponding mechanism of its function remain unclear.Methods:In this study,we employed(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium)(MTS)assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells in vitro.RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC.Finally,confirmed the predicted important signaling pathways through RT-qPCR and western blotting.Results:In this study,we found that KBU2046 functioned as a novel transforming growth factor-β(TGF-β1)inhibitor,effectively suppressing tumor cell motility in vitro.Mechanistically,it directly down-regulated leucine-rich repeat-containing 8 family,member E(LRRC8E),latent TGFβ-binding protein 3(LTBP3),dynein light chain 1(DNAL1),and MAF family of bZIP transcription factors(MAFF)genes,along with reduced protein expression of the integrin family.Additionally,KBU2046 decreased phosphorylation levels of Raf and ERK.This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.Conclusions:In summary,these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC.Furthermore,our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.展开更多
Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibl...Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibly use a variety of plant landscaping methods to create a richer and more vivid natural landscape,and promote the improvement of the quality of the living environment and the harmonious coexistence between man and nature.展开更多
In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal i...In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.展开更多
Xibei tree peony is a distinctive cultivar group that features red–purple blotches in petals.Interestingly,the pigmentations of blotches and non-blotches are largely independent of one another.The underlying molecula...Xibei tree peony is a distinctive cultivar group that features red–purple blotches in petals.Interestingly,the pigmentations of blotches and non-blotches are largely independent of one another.The underlying molecular mechanism had attracted lots of attention from investigators,but was still uncertain.Our present work demonstrates the factors that are closely related to blotch formation in Paeonia rockii‘Shu Sheng Peng Mo’.Non-blotch pigmentation is prevented by the silencing of anthocyanin structural genes,among which PrF3H,PrDFR,and PrANS are the three major genes.We characterized two R2R3-MYBs as the key transcription factors that control the early and late anthocyanin biosynthetic pathways.PrMYBa1,which belongs to MYB subgroup 7(SG7)was found to activate the early biosynthetic gene(EBG)PrF3H by interacting with SG5 member PrMYBa2 to form an‘MM’complex.The SG6 member PrMYBa3 interacts with two SG5(IIIf)bHLHs to synergistically activate the late biosynthetic genes(LBGs)PrDFR and PrANS,which is essential for anthocyanin accumulation in petal blotches.The comparison of methylation levels of the PrANS and PrF3H promoters between blotch and non-blotch indicated a correlation between hypermethylation and gene silencing.The methylation dynamics of PrANS promoter during flower development revealed a potential early demethylating reaction,which may have contributed to the particular expression of PrANS solely in the blotch area.We suggest that the formation of petal blotch may be highly associated with the cooperation of transcriptional activation and DNA methylation of structural gene promoters.展开更多
American lotus(Nelumbo lutea)is one of the two species in Nelumbo and has only yellow flower.Identification of total flavonoids showed wild American lotus contained almost only flavonols with quercetin 3-O-glucuronide...American lotus(Nelumbo lutea)is one of the two species in Nelumbo and has only yellow flower.Identification of total flavonoids showed wild American lotus contained almost only flavonols with quercetin 3-O-glucuronide to be the dominant pigment.The variation tendency of the total flavonol content was coincident with yellow color variation of petals during flower development.To understand the mechanism of accumulation and constituent of pigments in petals,three pivotal genes,NlFLS1,NlFLS2 and NlFLS3,which were predicted to encode flavonol synthases were isolated and characterized by analyses of basic bioinformatics,temporal and spatial expression patterns and enzymatic activity.Their temporal expression levels showed the same variation tendency,which was also consistent with the development-dependent variation of total flavonol content.Spatial expression patterns indicated the three genes should function in petals.All the three proteins were demonstrated to be bifunctional dioxygenase,possessing both flavonol synthase activity and flavanone 3-hydroxylase activity.Besides,other flavonol biosynthesis related genes were also investigated on their expression levels to give more clues on the mechanism.Substrate preferences of the three FLSs,substrate competitions between the FLSs and other flavonol biosynthesis related enzymes,and the greatly differential expression levels between F3’H(flavonoid 3-hydroxylase)and F3’5’H(flavonoid 3,5-hydroxylase)contributed to the flavonol constituent in the petals of America lotus,namely abundant quercetin-derivatives while very few kaempferol-derivatives and myricetin-derivatives.展开更多
An OpenFOAM based turbulence combustion solver with flamelet generated manifolds (FGMs) is presented in this paper. A series of flamelets, representative for turbulent flames, are calculated first by a one-dimensional...An OpenFOAM based turbulence combustion solver with flamelet generated manifolds (FGMs) is presented in this paper. A series of flamelets, representative for turbulent flames, are calculated first by a one-dimensional (1D) detailed chemistry solver with the consideration of both transport and stretch/curvature contributions. The flame structure is then parameterized as a function of multiple reaction control variables. A manifold, which collects the 1D flame properties, is built from the 1D flame solutions. The control variables of the mixture fraction and the progress variable are solved from the corresponding transport equations. During the calculation, the scalar variables, e.g., temperature and species concentration, are retrieved from the manifolds by interpolation. A transport equation for NO is solved to improve its prediction accuracy. To verify the ability to deal with the enthalpy loss effect, the temperature retrieved directly from the manifolds is compared with the temperature solved from a transport equation of absolute enthalpy. The resulting FGM-computational fluid dynamics (CFD) coupled code has three significant features, i.e., accurate NO prediction, the ability to treat the heat loss effect and the adoption at the turbulence level, and high quality prediction within practical industrial configurations. The proposed method is validated against the Sandia flame D, and good agreement with the experimental data is obtained.展开更多
Columbite Zn0.8Co0.2Nb2O6 crystals were grown by optical floating zone methods. The x-ray diffraction(XRD) was used to check the structure information of the grown Zn0.8Co0.2Nb2O6 crystal. The room temperature and tem...Columbite Zn0.8Co0.2Nb2O6 crystals were grown by optical floating zone methods. The x-ray diffraction(XRD) was used to check the structure information of the grown Zn0.8Co0.2Nb2O6 crystal. The room temperature and temperature-dependent Raman spectra were tested to investigate the optical phonon behaviors of columbite Zn0.8Co0.2Nb2O6, which exhibited a temperature stable property. The magnetics properties of Zn0.8Co0.2Nb2O6, measured by a physical property measurement system(PPMS), were also presented in this work.展开更多
Topology played an important role in physics research during the last few decades.In particular,the quantum geometric tensor that provides local information about topological properties has attracted much attention.It...Topology played an important role in physics research during the last few decades.In particular,the quantum geometric tensor that provides local information about topological properties has attracted much attention.It will reveal interesting topological properties but have not been measured in non-Abelian systems.Here,we use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.By manipulating the Hamiltonian with periodic drivings,we simulate the Bernevig-Hughes-Zhang model and obtain the quantum geometric tensor from interference oscillation.In addition,we reveal its topological feature by extracting the topological invariant,demonstrating an effective protocol for quantum simulation of a non-Abelian system.展开更多
We demonstrate a broadband optical parametric oscillation,using a sheet cavity,via cavity phase-matching.A21.2 THz broad comb-like spectrum is achieved,with a uniform line spacing of 133.0 GHz,despite a relatively lar...We demonstrate a broadband optical parametric oscillation,using a sheet cavity,via cavity phase-matching.A21.2 THz broad comb-like spectrum is achieved,with a uniform line spacing of 133.0 GHz,despite a relatively large dispersion of 275.4 fs^(2)/mm around 1064 nm.With 22.6% high slope efficiency,and 14.9 kW peak power handling,this sheet optical parametric oscillator can be further developed for x^((2)) comb.展开更多
Recently,S-scheme heterojunctions have gained considerable attention in the field of photocatalytic environmental remediation as their potential to achieve efficient spatial charge separation coupled with strong redox...Recently,S-scheme heterojunctions have gained considerable attention in the field of photocatalytic environmental remediation as their potential to achieve efficient spatial charge separation coupled with strong redox capacities.Herein,this review provides an overview of the current state-of-the-art in the development of S-scheme-based photocatalysts for the purification of environmental contaminants.The review first covers the fundamentals of heterogeneous photocatalysis for environmental purification.Subsequently,an introduction to the background,mechanism,design principles,and characterization techniques of S-scheme heterojunctions is presented.Then,the review presents a comparison and summary of using various S-scheme photocatalysts for the removal of several target pollutants,such as bacteria,heavy metals,nitrogen oxides,antibiotics,and phenols.Additionally,the modification strategies of S-scheme heterojunction photocatalysts are also provided.Finally,a brief discussion of the challenges and prospects associated with S-scheme photocatalytic systems is demonstrated.展开更多
Traditional flame-retardant plastics are technically difficult to chemically recycle.The development of newtypes of flame-retardant plastics that are intrinsically capable of being closed-loop recycled and are suffici...Traditional flame-retardant plastics are technically difficult to chemically recycle.The development of newtypes of flame-retardant plastics that are intrinsically capable of being closed-loop recycled and are sufficiently robust and stable to satisfy their practical application is urgently needed.In this study,closed-loop recyclable flame-retardant plastics with high mechanical strength and excellent chemical resistance are fabricated by cross-linking amino-terminated polyimide(PI-NH_(2))and aldehyde-terminated cyclophosphazene(CP-CHO)with imine bonds.The resultant flame-retardant plastic,which is denoted as PI-CP,exhibits a tensile strength of∼115.6 MPa,Young’s modulus of∼2.5 GPa,and glass transition temperature of 316°C.In the PI-CP plastic,the imine bonds are isolated within hydrophobic microenvironments generated by the rigid and hydrophobic polyimide chains and the benzene ring of cyclophosphazenes.As a result,the PI-CP plastics are highly stable in highly acidic and basic aqueous solutions and other commonly used organic solvents.The PI-CP plastic shows outstanding flame retardancy with a limiting oxygen index value of 48.8%.More importantly,the PI-CP plastic can be depolymerized to generate the original PI-NH_(2)and CPCHO monomers in high yields(∼97%)and purity.The recovered monomers can be used to refabricate the original plastics,establishing highly efficient polymer-monomer-polymer circulation and a sustainable plastics economy.展开更多
In this contribution,we describe the preparation and recognition characteristics of a novel tetrapodal benzene cage(1).The cage can express a wide recognition range without losing selectivity for the object of appropr...In this contribution,we describe the preparation and recognition characteristics of a novel tetrapodal benzene cage(1).The cage can express a wide recognition range without losing selectivity for the object of appropriate size and functional groups.The key to obtaining the desired structural isomer of 1 is the synthesis and isolation of the o-bis(bromomethyl)benzene precursor(5).Three distinct guests,F^(−)(ex-tremely small size),d-lactate(appropriate size)and l-Asp(branched shape),were selected as examples to demonstrate the recognition characteristics of 1.By NMR titration studies,they all expressed good binding affinity(K>10^(5) L/mol)in competitive medium(10%DMSO/THF),indicating that 1 has a wide recognition scope.The highest binding constant was observed for d-lactate,revealing that 1 has good selectivity for d-lactate versus F^(−)and L-Asp.Moreover,the NMR titration study of F^(−)in DMSO indicates 1 can achieve different binding modes(1:1 and 2:1 guest-host)for small-sized guests,which allows for the further development of binary binding properties and thereafter applications in the field of catalysis.展开更多
Biofoam products have attracted considerable attention lately because there is a growing demand for green/sustainable products.To this end,various biobased foams have either been developed or are currently in developm...Biofoam products have attracted considerable attention lately because there is a growing demand for green/sustainable products.To this end,various biobased foams have either been developed or are currently in development,e.g.,bio-based polyurethanes(PUs),polylactic acid(PLA),starch,and polyhydroxyalkanotates(PHAs).Indeed,significant progress has been made;however,chal-lenges still persist,for example,biobased foam products have poor processability,inferior com-patibility,thermal and strength properties.In this review,we focus on five biofoam products:namely bio-based PUs,PLA,starch,PHAs,and cellulose biofoam products,along with their prop-erties and performance,as well as their manufacturing processes.Further efforts are still needed to unlock the full potential of these bio-based products and meet the goal of complementing and gradually replacing some of their fossil-based counterparts.Finally,the challenges,as well as arising opportunities of future research directions are discussed.展开更多
Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,t...Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids,but these are of limited benefit in patients.It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies.At present,how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research.Multi-ple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells,and in this article,we first review the principal mechanisms underlying hair cell reproduction.We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration,and we summarize current achievements in hair cell regeneration.Lastly,we discuss potential future approaches,such as small molecule drugs and gene therapy,which might be applied for regenerating functional hair cells in the clinic.展开更多
Cardiac fibrosis is one of the crucial pathological factors in the heart,and various cardiac conditions associated with excessive fibrosis can eventually lead to heart failure.However,the exact molecular mechanism of ...Cardiac fibrosis is one of the crucial pathological factors in the heart,and various cardiac conditions associated with excessive fibrosis can eventually lead to heart failure.However,the exact molecular mechanism of cardiac fibrosis remains unclear.In the present study,we show that a novel lnc RNA that we named cardiac fibrosis-associated regulator(CFAR)is a profibrotic factor in the heart.CFAR was upregulated in cardiac fibrosis and its knockdown attenuated the expression of fibrotic marker genes and the proliferation of cardiac fibroblasts,thereby ameliorating cardiac fibrosis.Moreover,CFAR acted as a ce RNA sponge for mi R-449a-5p and derepressed the expression of LOXL3,which we experimentally established as a target gene of mi R-449a-5p.In contrast to CFAR,mi R-449a-5p was found to be significantly downregulated in cardiac fibrosis,and artificial knockdown of mi R-449a-5p exacerbated fibrogenesis,whereas overexpression of mi R-449a-5p impeded fibrogenesis.Furthermore,we found that LOXL3 mimicked the fibrotic factor TGF-β1 to promote cardiac fibrosis by activating m TOR.Collectively,our study established CFAR as a new profibrotic factor acting through a novel mi R-449a-5p/LOXL3/m TOR axis in the heart and therefore might be considered as a potential molecular target for the treatment of cardiac fibrosis and associated heart diseases.展开更多
基金Discipline Key Special ProjectGrant/Award Number:XKZDQY202001+7 种基金Henan Provincial Key R&D and Promotion Special ProjectGrant/Award Number:212102310033Henan Provincial Medical Science and Technology Tackling ProgramGrant/Award Number:LHGJ20220557Key R&D Program of ChinaGrant/Award Number:2020YFC2006100,2020YFC2009000 and 2020YFC2009006National Natural Science Foundation of ChinaGrant/Award Number:31471330 and 81870408。
文摘Background:Nonalcoholic fatty liver disease(NAFLD)is one of the most common chronic liver diseases globally.Hepatic stellate cells(HSCs)are the major effector cells of liver fibrosis.HSCs contain abundant lipid droplets(LDs)in their cytoplasm during quiescence.Perilipin 5(PLIN 5)is a LD surface-associated protein that plays a crucial role in lipid homeostasis.However,little is known about the role of PLIN 5 in HSC activation.Methods:PLIN 5 was overexpressed in HSCs of Sprague–Dawley rats by lentivirus transfection.At the same time,PLIN 5 gene knockout mice were constructed and fed with a high-fat diet(HFD)for 20 weeks to study the role of PLIN 5 in NAFLD.The corresponding reagent kits were used to measure TG,GSH,Caspase 3 activity,ATP level,and mitochondrial DNA copy number.Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS.AMPK,mitochondrial function,cell proliferation,and apoptosis-related genes and proteins were detected by western blotting and qPCR.Results:Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria,inhibition of cell proliferation,and a significant increase in cell apoptosis through AMPK activation.In addition,compared with the HFD-fed C57BL/6J mice,PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition,decreased LD abundance and size,and reduced liver fibrosis.Conclusion:These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.
基金support from various funding sources,including the National Natural Science Foundation of China(Grant Nos.U21A20415,82002531)Hebei Provincial Key Research Projects(Grant No.223777157D)the Beijing Health Promotion Association,China(2022).
文摘Background:Triple-negative breast cancer(TNBC)is a heterogeneous,recurring cancer characterized by a high rate of metastasis,poor prognosis,and lack of efficient therapies.KBU2046,a small molecule inhibitor,can inhibit cell motility in malignant tumors,including breast cancer.However,the specific targets and the corresponding mechanism of its function remain unclear.Methods:In this study,we employed(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium)(MTS)assay and transwell assay to investigate the impact of KBU2046 on the proliferation and migration of TNBC cells in vitro.RNA-Seq was used to explore the targets of KBU2046 that inhibit the motility of TNBC.Finally,confirmed the predicted important signaling pathways through RT-qPCR and western blotting.Results:In this study,we found that KBU2046 functioned as a novel transforming growth factor-β(TGF-β1)inhibitor,effectively suppressing tumor cell motility in vitro.Mechanistically,it directly down-regulated leucine-rich repeat-containing 8 family,member E(LRRC8E),latent TGFβ-binding protein 3(LTBP3),dynein light chain 1(DNAL1),and MAF family of bZIP transcription factors(MAFF)genes,along with reduced protein expression of the integrin family.Additionally,KBU2046 decreased phosphorylation levels of Raf and ERK.This deactivation of the ERK signaling pathway impeded cancer invasion and metastasis.Conclusions:In summary,these findings advocate for the utilization of TGF-β1 as a diagnostic and prognostic biomarker and as a therapeutic target in TNBC.Furthermore,our data underscore the potential of KBU2046 as a novel therapeutic strategy for combating cancer metastasis.
文摘Garden landscape is a beautiful complex formed by space and time complementing each other and acting together.Garden plants are the core landscaping elements in garden landscape construction.It is necessary to flexibly use a variety of plant landscaping methods to create a richer and more vivid natural landscape,and promote the improvement of the quality of the living environment and the harmonious coexistence between man and nature.
文摘In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.
基金supported by the National Natural Science Foundation of China (52172110)the “Scientific and Technical Innovation Action Plan” China Science&Technology Cooperation Project of Shanghai Science and Technology Committee (21520760500)+1 种基金the “Super Postdoctoral Incentive Program” of Shanghai Municipal Human Resources and Social Security Bureau (2021411)Special Research Assistant Grant Project from Chinese Academy of Sciences
基金This work was supported by the National Natural Science Foundation of China(No.32030095).
文摘Xibei tree peony is a distinctive cultivar group that features red–purple blotches in petals.Interestingly,the pigmentations of blotches and non-blotches are largely independent of one another.The underlying molecular mechanism had attracted lots of attention from investigators,but was still uncertain.Our present work demonstrates the factors that are closely related to blotch formation in Paeonia rockii‘Shu Sheng Peng Mo’.Non-blotch pigmentation is prevented by the silencing of anthocyanin structural genes,among which PrF3H,PrDFR,and PrANS are the three major genes.We characterized two R2R3-MYBs as the key transcription factors that control the early and late anthocyanin biosynthetic pathways.PrMYBa1,which belongs to MYB subgroup 7(SG7)was found to activate the early biosynthetic gene(EBG)PrF3H by interacting with SG5 member PrMYBa2 to form an‘MM’complex.The SG6 member PrMYBa3 interacts with two SG5(IIIf)bHLHs to synergistically activate the late biosynthetic genes(LBGs)PrDFR and PrANS,which is essential for anthocyanin accumulation in petal blotches.The comparison of methylation levels of the PrANS and PrF3H promoters between blotch and non-blotch indicated a correlation between hypermethylation and gene silencing.The methylation dynamics of PrANS promoter during flower development revealed a potential early demethylating reaction,which may have contributed to the particular expression of PrANS solely in the blotch area.We suggest that the formation of petal blotch may be highly associated with the cooperation of transcriptional activation and DNA methylation of structural gene promoters.
基金supported by the Biological Resources Programme,Chinese Academy of Sciences(Grant No.KFJ-BRP-007)the National Natural Science Foundation of China(Grant No.32072620)the Shanghai Landscaping Administration Bureau(Grant No.G202405,G192415,G192407,G182412)。
文摘American lotus(Nelumbo lutea)is one of the two species in Nelumbo and has only yellow flower.Identification of total flavonoids showed wild American lotus contained almost only flavonols with quercetin 3-O-glucuronide to be the dominant pigment.The variation tendency of the total flavonol content was coincident with yellow color variation of petals during flower development.To understand the mechanism of accumulation and constituent of pigments in petals,three pivotal genes,NlFLS1,NlFLS2 and NlFLS3,which were predicted to encode flavonol synthases were isolated and characterized by analyses of basic bioinformatics,temporal and spatial expression patterns and enzymatic activity.Their temporal expression levels showed the same variation tendency,which was also consistent with the development-dependent variation of total flavonol content.Spatial expression patterns indicated the three genes should function in petals.All the three proteins were demonstrated to be bifunctional dioxygenase,possessing both flavonol synthase activity and flavanone 3-hydroxylase activity.Besides,other flavonol biosynthesis related genes were also investigated on their expression levels to give more clues on the mechanism.Substrate preferences of the three FLSs,substrate competitions between the FLSs and other flavonol biosynthesis related enzymes,and the greatly differential expression levels between F3’H(flavonoid 3-hydroxylase)and F3’5’H(flavonoid 3,5-hydroxylase)contributed to the flavonol constituent in the petals of America lotus,namely abundant quercetin-derivatives while very few kaempferol-derivatives and myricetin-derivatives.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21060102)Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development of China(No.y809jh1001)
文摘An OpenFOAM based turbulence combustion solver with flamelet generated manifolds (FGMs) is presented in this paper. A series of flamelets, representative for turbulent flames, are calculated first by a one-dimensional (1D) detailed chemistry solver with the consideration of both transport and stretch/curvature contributions. The flame structure is then parameterized as a function of multiple reaction control variables. A manifold, which collects the 1D flame properties, is built from the 1D flame solutions. The control variables of the mixture fraction and the progress variable are solved from the corresponding transport equations. During the calculation, the scalar variables, e.g., temperature and species concentration, are retrieved from the manifolds by interpolation. A transport equation for NO is solved to improve its prediction accuracy. To verify the ability to deal with the enthalpy loss effect, the temperature retrieved directly from the manifolds is compared with the temperature solved from a transport equation of absolute enthalpy. The resulting FGM-computational fluid dynamics (CFD) coupled code has three significant features, i.e., accurate NO prediction, the ability to treat the heat loss effect and the adoption at the turbulence level, and high quality prediction within practical industrial configurations. The proposed method is validated against the Sandia flame D, and good agreement with the experimental data is obtained.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403704)the National Natural Science Foundation of China(Grant Nos.11304113,11474127,and 11574112)the Fundamental Research Funds for the Central Universities of China
文摘Columbite Zn0.8Co0.2Nb2O6 crystals were grown by optical floating zone methods. The x-ray diffraction(XRD) was used to check the structure information of the grown Zn0.8Co0.2Nb2O6 crystal. The room temperature and temperature-dependent Raman spectra were tested to investigate the optical phonon behaviors of columbite Zn0.8Co0.2Nb2O6, which exhibited a temperature stable property. The magnetics properties of Zn0.8Co0.2Nb2O6, measured by a physical property measurement system(PPMS), were also presented in this work.
基金supported by the Key R&D Program of Guangdong Province(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant Nos.11474152,12074179,U21A20436,and 61521001)the Natural Science Foundation of Jiangsu Province(Grant No.BE2021015-1).
文摘Topology played an important role in physics research during the last few decades.In particular,the quantum geometric tensor that provides local information about topological properties has attracted much attention.It will reveal interesting topological properties but have not been measured in non-Abelian systems.Here,we use a four-qubit quantum system in superconducting circuits to construct a degenerate Hamiltonian with parametric modulation.By manipulating the Hamiltonian with periodic drivings,we simulate the Bernevig-Hughes-Zhang model and obtain the quantum geometric tensor from interference oscillation.In addition,we reveal its topological feature by extracting the topological invariant,demonstrating an effective protocol for quantum simulation of a non-Abelian system.
基金Supported by the National Key Research and Development Program of China(Grant Nos.2019YFA0705000 and 2017YFA0303700)the Key R&D Program of Guangdong Province(Grant No.2018B030329001)+1 种基金the Leading-Edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861,11690031,11621091,and 11674169)。
文摘We demonstrate a broadband optical parametric oscillation,using a sheet cavity,via cavity phase-matching.A21.2 THz broad comb-like spectrum is achieved,with a uniform line spacing of 133.0 GHz,despite a relatively large dispersion of 275.4 fs^(2)/mm around 1064 nm.With 22.6% high slope efficiency,and 14.9 kW peak power handling,this sheet optical parametric oscillator can be further developed for x^((2)) comb.
基金supported by the National Natural Science Foundation of China(Nos.21975110 and 52102362)Taishan Youth Scholars Program of Shandong Province(No.tsqn201909102)+1 种基金Shandong Provincial Natural Science Foundation(Nos.ZR2021QB022,ZR2021ME012,and ZR2022QE036)State Key Laboratory of Bio-fibers and Eco-textiles(Qingdao University).
文摘Recently,S-scheme heterojunctions have gained considerable attention in the field of photocatalytic environmental remediation as their potential to achieve efficient spatial charge separation coupled with strong redox capacities.Herein,this review provides an overview of the current state-of-the-art in the development of S-scheme-based photocatalysts for the purification of environmental contaminants.The review first covers the fundamentals of heterogeneous photocatalysis for environmental purification.Subsequently,an introduction to the background,mechanism,design principles,and characterization techniques of S-scheme heterojunctions is presented.Then,the review presents a comparison and summary of using various S-scheme photocatalysts for the removal of several target pollutants,such as bacteria,heavy metals,nitrogen oxides,antibiotics,and phenols.Additionally,the modification strategies of S-scheme heterojunction photocatalysts are also provided.Finally,a brief discussion of the challenges and prospects associated with S-scheme photocatalytic systems is demonstrated.
基金supported by the National Natural Science Foundation of China(NSFC grant no.21935004).
文摘Traditional flame-retardant plastics are technically difficult to chemically recycle.The development of newtypes of flame-retardant plastics that are intrinsically capable of being closed-loop recycled and are sufficiently robust and stable to satisfy their practical application is urgently needed.In this study,closed-loop recyclable flame-retardant plastics with high mechanical strength and excellent chemical resistance are fabricated by cross-linking amino-terminated polyimide(PI-NH_(2))and aldehyde-terminated cyclophosphazene(CP-CHO)with imine bonds.The resultant flame-retardant plastic,which is denoted as PI-CP,exhibits a tensile strength of∼115.6 MPa,Young’s modulus of∼2.5 GPa,and glass transition temperature of 316°C.In the PI-CP plastic,the imine bonds are isolated within hydrophobic microenvironments generated by the rigid and hydrophobic polyimide chains and the benzene ring of cyclophosphazenes.As a result,the PI-CP plastics are highly stable in highly acidic and basic aqueous solutions and other commonly used organic solvents.The PI-CP plastic shows outstanding flame retardancy with a limiting oxygen index value of 48.8%.More importantly,the PI-CP plastic can be depolymerized to generate the original PI-NH_(2)and CPCHO monomers in high yields(∼97%)and purity.The recovered monomers can be used to refabricate the original plastics,establishing highly efficient polymer-monomer-polymer circulation and a sustainable plastics economy.
基金support by the National Natural Science Foundation of China(No.22101260)Natural Science Foundation of Zhejiang Province(No.LQ22B020001).
文摘In this contribution,we describe the preparation and recognition characteristics of a novel tetrapodal benzene cage(1).The cage can express a wide recognition range without losing selectivity for the object of appropriate size and functional groups.The key to obtaining the desired structural isomer of 1 is the synthesis and isolation of the o-bis(bromomethyl)benzene precursor(5).Three distinct guests,F^(−)(ex-tremely small size),d-lactate(appropriate size)and l-Asp(branched shape),were selected as examples to demonstrate the recognition characteristics of 1.By NMR titration studies,they all expressed good binding affinity(K>10^(5) L/mol)in competitive medium(10%DMSO/THF),indicating that 1 has a wide recognition scope.The highest binding constant was observed for d-lactate,revealing that 1 has good selectivity for d-lactate versus F^(−)and L-Asp.Moreover,the NMR titration study of F^(−)in DMSO indicates 1 can achieve different binding modes(1:1 and 2:1 guest-host)for small-sized guests,which allows for the further development of binary binding properties and thereafter applications in the field of catalysis.
基金the financial support from National Key Research and Development Plan(No.2017YFB0307901)the Canada Research Chairs program of the Government of Canada(No.CRC950213262)the Discovery Program of the Natural Sciences and Engineering Research Council of Canada(No.RGPIN-2022-03210).
文摘Biofoam products have attracted considerable attention lately because there is a growing demand for green/sustainable products.To this end,various biobased foams have either been developed or are currently in development,e.g.,bio-based polyurethanes(PUs),polylactic acid(PLA),starch,and polyhydroxyalkanotates(PHAs).Indeed,significant progress has been made;however,chal-lenges still persist,for example,biobased foam products have poor processability,inferior com-patibility,thermal and strength properties.In this review,we focus on five biofoam products:namely bio-based PUs,PLA,starch,PHAs,and cellulose biofoam products,along with their prop-erties and performance,as well as their manufacturing processes.Further efforts are still needed to unlock the full potential of these bio-based products and meet the goal of complementing and gradually replacing some of their fossil-based counterparts.Finally,the challenges,as well as arising opportunities of future research directions are discussed.
基金supported by grants from the National Key R&D Program of China(2021YFA1101300,2021YFA1101800,2020YFA0112503)the National Natural Science Foundation of China(82030029,81970882,82000984,92149304)+4 种基金the Science and Technology Department of Sichuan Province(2021YFS0371)the Shenzhen Fundamental Research Program(JCYJ20190814093401920,JCYJ20210324125608022)the China National Postdoctoral Program for Innovative Talents(BX20200082)the China Postdoctoral Science Foundation(2020M681468)the Open Research Fund of State Key Laboratory of Genetic Engineering,Fudan University(SKLGE-2104).
文摘Hearing loss has become increasingly prevalent and causes considerable disability,thus gravely burdening the global economy.Irreversible loss of hair cells is a main cause of sensorineural hearing loss,and currently,the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids,but these are of limited benefit in patients.It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies.At present,how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research.Multi-ple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells,and in this article,we first review the principal mechanisms underlying hair cell reproduction.We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration,and we summarize current achievements in hair cell regeneration.Lastly,we discuss potential future approaches,such as small molecule drugs and gene therapy,which might be applied for regenerating functional hair cells in the clinic.
基金supported by the National Natural Science Foundation of China(82070240,82073844,82070236,82270246)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020169)Harbin Medical University Marshal Initiative Funding(HMUMIF-21026)。
文摘Cardiac fibrosis is one of the crucial pathological factors in the heart,and various cardiac conditions associated with excessive fibrosis can eventually lead to heart failure.However,the exact molecular mechanism of cardiac fibrosis remains unclear.In the present study,we show that a novel lnc RNA that we named cardiac fibrosis-associated regulator(CFAR)is a profibrotic factor in the heart.CFAR was upregulated in cardiac fibrosis and its knockdown attenuated the expression of fibrotic marker genes and the proliferation of cardiac fibroblasts,thereby ameliorating cardiac fibrosis.Moreover,CFAR acted as a ce RNA sponge for mi R-449a-5p and derepressed the expression of LOXL3,which we experimentally established as a target gene of mi R-449a-5p.In contrast to CFAR,mi R-449a-5p was found to be significantly downregulated in cardiac fibrosis,and artificial knockdown of mi R-449a-5p exacerbated fibrogenesis,whereas overexpression of mi R-449a-5p impeded fibrogenesis.Furthermore,we found that LOXL3 mimicked the fibrotic factor TGF-β1 to promote cardiac fibrosis by activating m TOR.Collectively,our study established CFAR as a new profibrotic factor acting through a novel mi R-449a-5p/LOXL3/m TOR axis in the heart and therefore might be considered as a potential molecular target for the treatment of cardiac fibrosis and associated heart diseases.