期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sustainable recycling of titanium from TiO_(2) in spent SCR denitration catalyst via molten salt electrolysis 被引量:4
1
作者 Xuyang Bai xiaojia shang +4 位作者 Heli Wan Yusi Che Bin Yang Jilin He Jianxun Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期557-563,共7页
Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount... Spent catalyst used for denitration by selective catalytic reduction(spent SCR denitration catalysts) is one of the important urban mines due to the high content of TiO_(2)(~85 wt%) and the massive accumulation amount(over 100,000 tons),therefore,value-added reutilization of titanium in spent SCR catalysts is considerably meaningful.In this paper,a novel method is proposed for converting the titanium oxide in spent SCR denitration catalysts to metallic titanium.Specifically,titanium dioxide(TiO_(2)) was firstly obtained from spent SCR denitration catalysts after removing the impurities by hydrometallurgy process.Then,TiO_(2) is converted to Ti_(2)CO by carbothermic reduction method,and Ti_(2)CO was further purified by oleic acid capture.Finally,by utilizing the as-prepared Ti_(2)CO as the consumable anode in the NaCl-KCl molten salt,high-purity metallic titanium was deposited at cathode,all confirming the feasibility for the conversion of low-grade TiO_(2) in the spent catalysts,from 60 wt% to high-purity metallic Ti(99.5 wt%), furthermore,the energy consumption of this process is 3950 kWh tonne-1 Ti,which is lower than that of most traditional titanium metallurgy methods.The method herein can provide new insights for the value-added recycling of titanium resources in urban mines. 展开更多
关键词 Spent SCR denitration catalyst HYDROMETALLURGY IMPURITY Ti_(2)CO Molten salt
下载PDF
The silicothermic reduction of magnesium in flowing argon and numerical simulation of novel technology 被引量:2
2
作者 Yusi Che Chao Zhang +3 位作者 Jianxun Song xiaojia shang Xiping Chen Jilin He 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第3期752-760,共9页
The silicothermic reduction of magnesium was investigated by the non-isothermal thermoanalysis in flowing argon,while the traditional investigations of silicothermic process for magnesium reduction were carried out un... The silicothermic reduction of magnesium was investigated by the non-isothermal thermoanalysis in flowing argon,while the traditional investigations of silicothermic process for magnesium reduction were carried out under vacuum conditions.Firstly,the thermal gravimetric(TG)and derivative thermogravimetric(DTG)characteristic of briquettes prepared with calcined dolomite,ferrosilicon and fluorite were characterized by the thermogravimetric analyzer(TGA)at different heating rates.The intrinsic chemical kinetic mechanism was identified as a formal chemical reaction with the Nth order type which showed apparent activation energy E and reaction order n were 290.168 kJ mol^(-1) and 1.076,respectively.Then,a novel technique of magnesium production without vacuum was put forward and a three-dimensional unsteady numerical model incorporating the chemical reaction,radiation,heat conduction and heat convection was established and simulated,which was verified by Pidgeon process and novel tech no logy.rIhe nu merical results showed that the cycle time of the novel technique could be reduced when the argon temperature was higher than 1343 K and the argon entrance velocity was over 0.05 m s^(-1).And the effect of the argon temperature on reduction degree was much larger than that of entrance velocity. 展开更多
关键词 Kinetics mechanism Heat convection Silicothermic reduction Numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部