The traditional Chinese herb Astragalus membranaceus is a well-known treatment for neurological diseases and is considered to exhibit anti-dementia properties.This study investigated the synergistic effects of magnesi...The traditional Chinese herb Astragalus membranaceus is a well-known treatment for neurological diseases and is considered to exhibit anti-dementia properties.This study investigated the synergistic effects of magnesium ions and Astragalus membranaceus on global brain ischemia in rats.4'-6-diamidino-2-phenylindole staining demonstrated that the number of living neurons was significantly greater in the rat hippocampus after administration of a combination of Astragalus membranaceus and magnesium,compared with a vehicle group,an Astragalus membranaceus alone group,and a magnesium alone group.Western blot assay revealed that cleaved Caspase-3 protein expression was significantly reduced in the rat hippocampus in the combined Astragalus membranaceus and magnesium group compared with the Astragalus membranaceus alone group and the magnesium alone group.The results suggested that the combination of Astragalus membranaceus and magnesium exhibits a stronger neuroprotective effect on global brain ischemia in rats compared with Astragalus membranaceus or magnesium alone.This effect was associated with decreased Caspase-3 expression.展开更多
Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD em...Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.展开更多
To the Editor:Copper is a crucial trace element in the body that plays a key role in metabolism and biological functions.Copper ions are found in two forms,Cu^(1+)and Cu^(2+),of which Cu^(1+)is the main form stored in...To the Editor:Copper is a crucial trace element in the body that plays a key role in metabolism and biological functions.Copper ions are found in two forms,Cu^(1+)and Cu^(2+),of which Cu^(1+)is the main form stored in cells.Numerous studies have shown that intracellular copper accumulation can cause oxidative stress and disrupt cellular function.[1]Different from apoptosis,autophagy,pyroptosis,and ferroptosis,cuproptosis is a newly discovered type of cell death in 2022.[2]It is mediated by protein lipoylation with ferredoxin 1(FDX1)in mitochondria.The most common pathological type of kidney cancer in adults is clear cell renal cell carcinoma(ccRCC),which accounts for 70-80%of all cases of renal cell carcinoma(RCC).[3]Currently,surgical resection is the preferred treatment for RCC,as radiotherapy,chemotherapy,and immunotherapy have shown limited effectiveness in treating ccRCC.However,cuproptosis induction may offer a new approach for ccRCC treatment.展开更多
It remains a great challenge to achieve sufficient cancer classification accuracy with the entire set of genes, due to the high dimensions, small sample size, and big noise of gene expression data. We thus proposed a ...It remains a great challenge to achieve sufficient cancer classification accuracy with the entire set of genes, due to the high dimensions, small sample size, and big noise of gene expression data. We thus proposed a hybrid gene selection method, Information Gain-Support Vector Machine (IG-SVM) in this study. IG was initially employed to filter irrelevant and redundant genes. Then, further removal of redundant genes was performed using SVM to eliminate the noise in the datasets more effectively. Finally, the informative genes selected by IG-SVM served as the input for the LIBSVM classifier. Compared to other related algorithms, IG-SVM showed the highest classification accuracy and superior performance as evaluated using five cancer gene expression datasets based on a few selected genes. As an example, IG-SVM achieved a classification accuracy of 90.32% for colon cancer, which is difficult to be accurately classified, only based on three genes including CSRP1, MYLg, and GUCA2B.展开更多
The synergistic use of transition metal catalysis and electrochemistry is an attractive strategy for oxidative site-selective C–H functionalization since the use of stoichiometric chemical oxidants can be avoided and...The synergistic use of transition metal catalysis and electrochemistry is an attractive strategy for oxidative site-selective C–H functionalization since the use of stoichiometric chemical oxidants can be avoided and novel reactivity can be achieved.However,metalcatalyzed electrochemical C–H functionalization is mainly limited to arene C(sp^(2))–Hfunctionalization,and enantioselective C–H functionalization is uncommon and remains challenging.展开更多
Dry powder inhalation represents a promising approach for the treatment of lung cancer,offering several advantages such as enhanced targeting,improved bioavailability,and reduced toxicity.However,traditional dry powde...Dry powder inhalation represents a promising approach for the treatment of lung cancer,offering several advantages such as enhanced targeting,improved bioavailability,and reduced toxicity.However,traditional dry powder formulations suffer from limitations,notably low pulmonary delivery efficiency and inadequate penetration into tumor tissues,thereby limiting their therapeutic efficacy.In response to these challenges,we have developed an innovative trojan horse strategy,harnessing an inhalable nanoparticlein-microsphere system characterized by tunable size,reversible charge,and mucus-penetrating capabilities.The inhalable nanoparticle-in-microsphere system exhibit stable structural properties,excellent environmental responsiveness and high biocompatibility.More importantly,the therapeutic effect of MTX@PAMAM@HA@Gel(MPHG)was demonstrated in vitro and in vivo.This system offers improved pulmonary delivery efficiency,enhanced drug retention within tumor tissues,and effective penetration,thus representing a promising strategy in lung cancer treatment.展开更多
基金the National Natural Science Foundation of China, No. 81000498the Natural Science Foundation of Nanjing Medical University, No. 09MJMUM107
文摘The traditional Chinese herb Astragalus membranaceus is a well-known treatment for neurological diseases and is considered to exhibit anti-dementia properties.This study investigated the synergistic effects of magnesium ions and Astragalus membranaceus on global brain ischemia in rats.4'-6-diamidino-2-phenylindole staining demonstrated that the number of living neurons was significantly greater in the rat hippocampus after administration of a combination of Astragalus membranaceus and magnesium,compared with a vehicle group,an Astragalus membranaceus alone group,and a magnesium alone group.Western blot assay revealed that cleaved Caspase-3 protein expression was significantly reduced in the rat hippocampus in the combined Astragalus membranaceus and magnesium group compared with the Astragalus membranaceus alone group and the magnesium alone group.The results suggested that the combination of Astragalus membranaceus and magnesium exhibits a stronger neuroprotective effect on global brain ischemia in rats compared with Astragalus membranaceus or magnesium alone.This effect was associated with decreased Caspase-3 expression.
基金Supported by the National Key Research and Development Program of China(Nos.2017YFA0604100,2016YFC1402004,2017YFC1404200)the Program for Innovation Research and Entrepreneurship Team in Jiangsu Provincethe National Natural Science Foundation of China(Nos.41476022,41490643)。
文摘Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.
文摘To the Editor:Copper is a crucial trace element in the body that plays a key role in metabolism and biological functions.Copper ions are found in two forms,Cu^(1+)and Cu^(2+),of which Cu^(1+)is the main form stored in cells.Numerous studies have shown that intracellular copper accumulation can cause oxidative stress and disrupt cellular function.[1]Different from apoptosis,autophagy,pyroptosis,and ferroptosis,cuproptosis is a newly discovered type of cell death in 2022.[2]It is mediated by protein lipoylation with ferredoxin 1(FDX1)in mitochondria.The most common pathological type of kidney cancer in adults is clear cell renal cell carcinoma(ccRCC),which accounts for 70-80%of all cases of renal cell carcinoma(RCC).[3]Currently,surgical resection is the preferred treatment for RCC,as radiotherapy,chemotherapy,and immunotherapy have shown limited effectiveness in treating ccRCC.However,cuproptosis induction may offer a new approach for ccRCC treatment.
基金the Top Talent Support Program for Medical Experts Team and for Young and Middle-Aged People of Wuxi Health Committee(202109 and 202014)the National Key R&D Program of China(2021YFC2501100 and 2020YFA0803700)the National Natural Science Foundation of China(82071296,81801158,and 81970425)。
基金supported by the National Natural Science Foundation of China(Grant No.61672386)Humanities and Social Sciences Planning Project of Ministry of Education,China(Grant No.16YJAZH071)+1 种基金Anhui Provincial Natural Science Foundation of China(Grant No.1708085MF142)the Natural Science Research Key Project of Anhui Colleges,China(Grant No.KJ2014A266)
文摘It remains a great challenge to achieve sufficient cancer classification accuracy with the entire set of genes, due to the high dimensions, small sample size, and big noise of gene expression data. We thus proposed a hybrid gene selection method, Information Gain-Support Vector Machine (IG-SVM) in this study. IG was initially employed to filter irrelevant and redundant genes. Then, further removal of redundant genes was performed using SVM to eliminate the noise in the datasets more effectively. Finally, the informative genes selected by IG-SVM served as the input for the LIBSVM classifier. Compared to other related algorithms, IG-SVM showed the highest classification accuracy and superior performance as evaluated using five cancer gene expression datasets based on a few selected genes. As an example, IG-SVM achieved a classification accuracy of 90.32% for colon cancer, which is difficult to be accurately classified, only based on three genes including CSRP1, MYLg, and GUCA2B.
基金grant fromNSFC(nos.21821002,21772222,and 91956112),CAS(no.XDB20000000)Science and Technology Commission of Shanghai Municipality(nos.18JC1415600 and 20JC1417100).
文摘The synergistic use of transition metal catalysis and electrochemistry is an attractive strategy for oxidative site-selective C–H functionalization since the use of stoichiometric chemical oxidants can be avoided and novel reactivity can be achieved.However,metalcatalyzed electrochemical C–H functionalization is mainly limited to arene C(sp^(2))–Hfunctionalization,and enantioselective C–H functionalization is uncommon and remains challenging.
基金supported by the National Natural Science Foundation of China(No.52273123)the Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0474)the Talent-introduction Program of Chongqing Medical and Pharmaceutical College(No.YGZRC2023103).
文摘Dry powder inhalation represents a promising approach for the treatment of lung cancer,offering several advantages such as enhanced targeting,improved bioavailability,and reduced toxicity.However,traditional dry powder formulations suffer from limitations,notably low pulmonary delivery efficiency and inadequate penetration into tumor tissues,thereby limiting their therapeutic efficacy.In response to these challenges,we have developed an innovative trojan horse strategy,harnessing an inhalable nanoparticlein-microsphere system characterized by tunable size,reversible charge,and mucus-penetrating capabilities.The inhalable nanoparticle-in-microsphere system exhibit stable structural properties,excellent environmental responsiveness and high biocompatibility.More importantly,the therapeutic effect of MTX@PAMAM@HA@Gel(MPHG)was demonstrated in vitro and in vivo.This system offers improved pulmonary delivery efficiency,enhanced drug retention within tumor tissues,and effective penetration,thus representing a promising strategy in lung cancer treatment.