The deformation and damage evolution of sandstone after heat treatment greatly influence the efficient and safe development of deep geothermal energy extraction.To investigate this issue,laboratory confined compressio...The deformation and damage evolution of sandstone after heat treatment greatly influence the efficient and safe development of deep geothermal energy extraction.To investigate this issue,laboratory confined compression tests and numerical simulations were conducted on pre-holed sandstone specimens after heat treatment.The laboratory test results show that the failure modes are closely related to the heat treatment temperature,with increasing treatment temperature,the failure modes change from mixed and shear modes to a splitting mode.The cracks always initiate from the sidewalls of the hole and then propagate.The failure process inside the hole proceeds as follows:calm period,particle ejection period,rock fragment exfoliation period and rock failure period.The specimens have different final failure features for the entire rock after heat treatment,but have the same failure features inside the hole.These phenomena can be explained by numerical simulations.The numerical simulations reveal that the failure modes in the numerical results agree very well with those observed in the experimental results.The damage zone always occurs at sidewalls of the hole and then propagates to the entire rock affected by shear or tensile damage.From 20℃to 200℃,thermal effect may promote shear damage and restrain tensile damage,while from 200℃to 800℃,thermal effect promotes tensile damage and restrains shear damage.Notably,the damage zone near the sidewalls of the hole has the same distribution range and pattern.Finally,the differences in the mechanisms due to increasing heat temperature are evaluated using scanning electron microscope(SEM)observations.展开更多
[ Objective] This study aimed to investigate the tissue culture and propagation technology in Tagetes patu/a L. [ Method] By using tissue culture tech- nology, different mass fractions of 6-BA and NAA were added to MS...[ Objective] This study aimed to investigate the tissue culture and propagation technology in Tagetes patu/a L. [ Method] By using tissue culture tech- nology, different mass fractions of 6-BA and NAA were added to MS medium to compare the effect of different culture medium on the rapid propagation of T. patu/a L. [Result] Shoot tips or stem segments of T. patu/a L. were used as explants for tissue culture with an appropriate sterilization time of 8 min; differentiation effect of shoot tips was better than that of stem segments; callus generation rate was high with the high content of growth regulators; MS medium containing O. 1 mg/L NAA and 1.5 rag/L 6-BA was used for subculture proliferation with a subculture period of 4 weeks; rooting rate of plantlet was the maximum (97%) in 1/2MS medium containing 0.2 mg/L NAA, and the root system was relatively developed. [ Conclusion] This study provided technical support for the industrialized seedling breeding of T. patula L.展开更多
Hazardous waste stream needs to be managed so as not to exceed stock-and rate-limited properties of its recipient ecosystems.The co-pyrolysis of Chinese medicine residue(CMR)and textile dyeing sludge(TDS)and its bio-o...Hazardous waste stream needs to be managed so as not to exceed stock-and rate-limited properties of its recipient ecosystems.The co-pyrolysis of Chinese medicine residue(CMR)and textile dyeing sludge(TDS)and its bio-oil,biochar,and ash quality and quantity were characterized as a function of the immersion of K_(2)CO_(3),atmosphere type,blend ratio,and temperature.Compared to the mono-pyrolysis of TDS,its co-pyrolysis performance with CMR(the comprehensive performance index(CPI))significantly improved by 33.9%in the N_(2)atmosphere and 33.2%in the CO_(2)atmosphere.The impregnation catalyzed the co-pyrolysis at 370℃,reduced its activation energy by 77.3 kJ/mol in the N_(2)atmosphere and 134.6 kJ/mol in the CO_(2)atmosphere,and enriched the degree of coke gasification by 44.25%in the CO_(2)atmosphere.The impregnation increased the decomposition rate of the co-pyrolysis by weakening the bond energy of fatty side chains and bridge bonds,its catalytic and secondary products,and its bio-oil yield by 66.19%.Its bio-oils mainly contained olefins,aromatic structural substances,and alcohols.The immersion of K_(2)CO_(3)improved the aromaticity of the copyrolytic biochars and reduced the contact between K and Si which made it convenient for Mg to react with SiO_(2)to form magnesium-silicate.The co-pyrolytic biochar surfaces mainly included-OH,-CH_(2),C=C,and Si-O-Si.The main phases in the co-pyrolytic ash included Ca_(5)(PO_(4))_(3)(OH),Al_(2)O_(3),and magnesium-silicate.展开更多
Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),consider...Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),considering hetero-gate-dielectric construction,dielectric materials and GaSe stacking pattern.The results show that device performance strongly depends on the dielectric constants and locations of insulators.When highk dielectric is placed close to the drain,it behaves with a larger on-state current(I_(on))of 5052μA/μm when the channel is 5 nm.Additionally,when the channel is 5 nm and insulator is HfO2,the largest I_(on) is 5134μA/μm for devices with AC stacking GaSe channel.In particular,when the gate length is 2 nm,it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used.Hence,the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.展开更多
Pyruvate kinase (PK) is a key enzyme in glycolysis and carbon metabolism. Here, we isolated a rice (Oryza sativa) mutant, w59, with a white-core floury endosperm. Map-based cloning of w59 identified a mutation in ...Pyruvate kinase (PK) is a key enzyme in glycolysis and carbon metabolism. Here, we isolated a rice (Oryza sativa) mutant, w59, with a white-core floury endosperm. Map-based cloning of w59 identified a mutation in OsPKpα1, which encodes a plastidic isoform of PK (PKp). OsPKpα1 localizes to the amyloplast stroma in the developing endosperm, and the mutation of OsPKpα1 in w59 decreases the plastidic PK activity, resulting in dramatic changes to the lipid biosynthesis in seeds. The w59 grains were also characterized by a marked decrease in starch content. Consistent with a decrease in number and size of the w59 amyloplasts, large empty spaces were observed in the central region of the w59 endosperm, at the early grain-filling stage. Moreover, a phylogenetic analysis revealed four potential rice isoforms of OsPKp. We validated the in vitro PK activity of these OsPKps through reconstituting active PKp complexes derived from inactive individual OsPKps, revealing the heteromeric structure of rice PKps, which was further confirmed using a protein- protein interaction analysis. These findings suggest a functional connection between lipid and starch synthesis in rice endosperm amyloplasts.展开更多
基金the National Basic Research Program of China(973 Program)Grant No.2014CB046905the National Natural Science Foundation of China(No.51174197).
文摘The deformation and damage evolution of sandstone after heat treatment greatly influence the efficient and safe development of deep geothermal energy extraction.To investigate this issue,laboratory confined compression tests and numerical simulations were conducted on pre-holed sandstone specimens after heat treatment.The laboratory test results show that the failure modes are closely related to the heat treatment temperature,with increasing treatment temperature,the failure modes change from mixed and shear modes to a splitting mode.The cracks always initiate from the sidewalls of the hole and then propagate.The failure process inside the hole proceeds as follows:calm period,particle ejection period,rock fragment exfoliation period and rock failure period.The specimens have different final failure features for the entire rock after heat treatment,but have the same failure features inside the hole.These phenomena can be explained by numerical simulations.The numerical simulations reveal that the failure modes in the numerical results agree very well with those observed in the experimental results.The damage zone always occurs at sidewalls of the hole and then propagates to the entire rock affected by shear or tensile damage.From 20℃to 200℃,thermal effect may promote shear damage and restrain tensile damage,while from 200℃to 800℃,thermal effect promotes tensile damage and restrains shear damage.Notably,the damage zone near the sidewalls of the hole has the same distribution range and pattern.Finally,the differences in the mechanisms due to increasing heat temperature are evaluated using scanning electron microscope(SEM)observations.
文摘[ Objective] This study aimed to investigate the tissue culture and propagation technology in Tagetes patu/a L. [ Method] By using tissue culture tech- nology, different mass fractions of 6-BA and NAA were added to MS medium to compare the effect of different culture medium on the rapid propagation of T. patu/a L. [Result] Shoot tips or stem segments of T. patu/a L. were used as explants for tissue culture with an appropriate sterilization time of 8 min; differentiation effect of shoot tips was better than that of stem segments; callus generation rate was high with the high content of growth regulators; MS medium containing O. 1 mg/L NAA and 1.5 rag/L 6-BA was used for subculture proliferation with a subculture period of 4 weeks; rooting rate of plantlet was the maximum (97%) in 1/2MS medium containing 0.2 mg/L NAA, and the root system was relatively developed. [ Conclusion] This study provided technical support for the industrialized seedling breeding of T. patula L.
基金National Natural Science Foundation of China (Nos.51978175,42177196,and 22006015)the Scientific and Technological Planning Project of Guangzhou,China (No.202103000004)+2 种基金the Guangdong Province Science and Technology Planning Project,China (No.2022A0505050076)the Dongguan Science and Technology of Social Development Program (No.20211800904662)the Dongguan Sci-tech Commissioner Program (No.20221800500282)。
文摘Hazardous waste stream needs to be managed so as not to exceed stock-and rate-limited properties of its recipient ecosystems.The co-pyrolysis of Chinese medicine residue(CMR)and textile dyeing sludge(TDS)and its bio-oil,biochar,and ash quality and quantity were characterized as a function of the immersion of K_(2)CO_(3),atmosphere type,blend ratio,and temperature.Compared to the mono-pyrolysis of TDS,its co-pyrolysis performance with CMR(the comprehensive performance index(CPI))significantly improved by 33.9%in the N_(2)atmosphere and 33.2%in the CO_(2)atmosphere.The impregnation catalyzed the co-pyrolysis at 370℃,reduced its activation energy by 77.3 kJ/mol in the N_(2)atmosphere and 134.6 kJ/mol in the CO_(2)atmosphere,and enriched the degree of coke gasification by 44.25%in the CO_(2)atmosphere.The impregnation increased the decomposition rate of the co-pyrolysis by weakening the bond energy of fatty side chains and bridge bonds,its catalytic and secondary products,and its bio-oil yield by 66.19%.Its bio-oils mainly contained olefins,aromatic structural substances,and alcohols.The immersion of K_(2)CO_(3)improved the aromaticity of the copyrolytic biochars and reduced the contact between K and Si which made it convenient for Mg to react with SiO_(2)to form magnesium-silicate.The co-pyrolytic biochar surfaces mainly included-OH,-CH_(2),C=C,and Si-O-Si.The main phases in the co-pyrolytic ash included Ca_(5)(PO_(4))_(3)(OH),Al_(2)O_(3),and magnesium-silicate.
基金supported by the National Natural Science Foundation of China(Grants Nos.12374070 and 12074103)the Foundation for University Key Young Teacher of Henan(Grant No.2023GGJS035)+2 种基金Henan Province Postdoctoral Project Launch Funding(Grant No.5201029430112)the Science and Technology Program of Henan(Grant No.232102230080)supported by the High Performance Computing Center of Henan Normal University.
文摘Dielectric engineering plays a crucial role in the process of device miniaturization.Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors(MOSFETs),considering hetero-gate-dielectric construction,dielectric materials and GaSe stacking pattern.The results show that device performance strongly depends on the dielectric constants and locations of insulators.When highk dielectric is placed close to the drain,it behaves with a larger on-state current(I_(on))of 5052μA/μm when the channel is 5 nm.Additionally,when the channel is 5 nm and insulator is HfO2,the largest I_(on) is 5134μA/μm for devices with AC stacking GaSe channel.In particular,when the gate length is 2 nm,it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used.Hence,the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.
基金supported by grants from the National Key Research and Development Program of China(2016YFD0100101-08)the National Transformation Science and Technology Program(2016ZX08001006)+3 种基金the Jiangsu Science and Technology Development Program(BE2015363)the Agricultural Science and Technology Innovation Fund project of Jiangsu Province(CX(16)1029)the Key Laboratory of Biology,Genetics and Breeding of Japonica Rice in the Mid-lower Yangtze River,Ministry of Agriculture,Chinathe Jiangsu Collaborative Innovation Center for Modern Crop Production
文摘Pyruvate kinase (PK) is a key enzyme in glycolysis and carbon metabolism. Here, we isolated a rice (Oryza sativa) mutant, w59, with a white-core floury endosperm. Map-based cloning of w59 identified a mutation in OsPKpα1, which encodes a plastidic isoform of PK (PKp). OsPKpα1 localizes to the amyloplast stroma in the developing endosperm, and the mutation of OsPKpα1 in w59 decreases the plastidic PK activity, resulting in dramatic changes to the lipid biosynthesis in seeds. The w59 grains were also characterized by a marked decrease in starch content. Consistent with a decrease in number and size of the w59 amyloplasts, large empty spaces were observed in the central region of the w59 endosperm, at the early grain-filling stage. Moreover, a phylogenetic analysis revealed four potential rice isoforms of OsPKp. We validated the in vitro PK activity of these OsPKps through reconstituting active PKp complexes derived from inactive individual OsPKps, revealing the heteromeric structure of rice PKps, which was further confirmed using a protein- protein interaction analysis. These findings suggest a functional connection between lipid and starch synthesis in rice endosperm amyloplasts.