The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear....The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2 and 5% CO2 for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract of Potentilla anserine L. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract of Potentilla anserine L. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract of Potentilla anserine L. could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.展开更多
BACKGROUND: The Glasgow Coma Scale, computer tomography, and nuclear magnetic resonance imaging have been frequently used to diagnose brain injury. However, these methods do not accurately and quantitatively evaluate...BACKGROUND: The Glasgow Coma Scale, computer tomography, and nuclear magnetic resonance imaging have been frequently used to diagnose brain injury. However, these methods do not accurately and quantitatively evaluate injury degree. However, proteomics displays some advantages. To date, there are few proteomics studies based on primary astrocyte cultures from a fluid percussion injury model. OBJECTIVE: To detect differential protein expression in rat cerebral cortical astrocytes following fluid percussion injury using two-dimensional gel electrophoresis and mass spectrum and to determine specific biological markers of brain injury. DESIGN, TIME AND SETTING: Complete, randomized grouping and proteomics experiments were performed at the Molecular Pathological Laboratory, Central Laboratory and Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard of Medical College of Chinese People's Armed Police Force from October 2007 to May 2008. MATERIALS: Inverted phase-contrast microscope was purchased from Olympus, Japan. PROTEAN IEF Cell isoelectric focusing electrophoresis system and PROTEAN II Xi-Cell vertical electrophoresis system were purchased from Bio-Rad, USA. Autofiex MALDI-TOF mass spectrometer was purchased from Bruker, Germany. METHODS: A total of 90 culture dishes, fully coated with Sprague Dawley rat cortical astrocytes, were randomly divided into control (n = 30) and injury (n = 60) groups. Astrocytes in the injury group were subjected to fluid percussion and subdivided into 4-hour (n = 30) and 48-hour injury (n = 30) groups. MAIN OUTCOME MEASURES: Cell morphology was observed using inverted phase-contrast microscopy. Cell total protein was extracted from each group, followed by two-dimensional gel electrophoresis and silver staining, and the differential protein expression was analyzed using PDQuest 7.0 software. Protein peptide mass fingerprinting of differential protein spots was obtained by matrix assisted laser desorption/ionization-time of flight mass spectrometry. The National Center for Biotechnology Information (NCBI) protein database was retrieved by Mascot to primarily identify protein type, Finally, differential protein expression was detected by Western blot analysis. RESULTS: Following fluid percussion injury, astrocytes displayed obvious swelling and increased intercellular space, with some cell detachment; the number of dead cells was significantly greater than the control group (P 〈 0.05). Expression intensity of 114 protein spots was significantly greater in the injury group compared with the control group (P〈 0.05); 9 of the 114 protein spots were identified and peptJde matching scores of 8 spots were 〉 61 (P 〈 0.05). Protein types were identified and included cellular retinol binding protein, brain fatty acid binding protein 7, $100 calcium binding protein All, 60S acidic ribosomal protein P2, calponin 3, breast carcinoma amplified sequence 2 homolog, eukaryotic translation initiation factor 1A, and hypothetical protein LOC685814. Western blot detection revealed brain fatty acid binding protein 7 expression in cortical astrocytes, which increased with injury time compared with the control group (P 〈 0.05). CONCLUSION: Results from this study showed morphological and proteomic changes in cortical astrocytes following fluid percussion injury. Brain fatty acid binding protein 7 was expressed in astrocytes and possibly played an important role in injury repair. Mass-spectrum identified differentially expressed proteins that correlated with cell metabolism regulation, signal transduction, and translation initiation, and could serve as specific biological markers of brain injury.展开更多
T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens,thereby engaging with CD3 on the T cell receptor.This linkage between tumor cells and T cells actively triggers T...T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens,thereby engaging with CD3 on the T cell receptor.This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells.These antibodies have emerged as one of the most promising avenues within tumor immunotherapy.However,despite success in treating hematological malignancies,significant advancements in solid tumors have yet to be explored.In this review,we aim to address the critical challenges associated with T cellredirecting bispecific antibodies and explore novel strategies to overcome these obstacles,with the ultimate goal of expanding the application of this therapy to include solid tumors.展开更多
基金supported by the National Natural Science Foundation of China, No. 30672774 and No. 81073152the Great Program of Science Foundation of Tianjin, No.10JCZDJC21100
文摘The alcohol and n-butanol extract of Potentilla anserine L. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2 and 5% CO2 for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract of Potentilla anserine L. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract of Potentilla anserine L. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract of Potentilla anserine L. could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.
基金the National Natural Science Foundation of China, No. 30471934
文摘BACKGROUND: The Glasgow Coma Scale, computer tomography, and nuclear magnetic resonance imaging have been frequently used to diagnose brain injury. However, these methods do not accurately and quantitatively evaluate injury degree. However, proteomics displays some advantages. To date, there are few proteomics studies based on primary astrocyte cultures from a fluid percussion injury model. OBJECTIVE: To detect differential protein expression in rat cerebral cortical astrocytes following fluid percussion injury using two-dimensional gel electrophoresis and mass spectrum and to determine specific biological markers of brain injury. DESIGN, TIME AND SETTING: Complete, randomized grouping and proteomics experiments were performed at the Molecular Pathological Laboratory, Central Laboratory and Tianjin Key Laboratory for Biomarkers of Occupational and Environmental Hazard of Medical College of Chinese People's Armed Police Force from October 2007 to May 2008. MATERIALS: Inverted phase-contrast microscope was purchased from Olympus, Japan. PROTEAN IEF Cell isoelectric focusing electrophoresis system and PROTEAN II Xi-Cell vertical electrophoresis system were purchased from Bio-Rad, USA. Autofiex MALDI-TOF mass spectrometer was purchased from Bruker, Germany. METHODS: A total of 90 culture dishes, fully coated with Sprague Dawley rat cortical astrocytes, were randomly divided into control (n = 30) and injury (n = 60) groups. Astrocytes in the injury group were subjected to fluid percussion and subdivided into 4-hour (n = 30) and 48-hour injury (n = 30) groups. MAIN OUTCOME MEASURES: Cell morphology was observed using inverted phase-contrast microscopy. Cell total protein was extracted from each group, followed by two-dimensional gel electrophoresis and silver staining, and the differential protein expression was analyzed using PDQuest 7.0 software. Protein peptide mass fingerprinting of differential protein spots was obtained by matrix assisted laser desorption/ionization-time of flight mass spectrometry. The National Center for Biotechnology Information (NCBI) protein database was retrieved by Mascot to primarily identify protein type, Finally, differential protein expression was detected by Western blot analysis. RESULTS: Following fluid percussion injury, astrocytes displayed obvious swelling and increased intercellular space, with some cell detachment; the number of dead cells was significantly greater than the control group (P 〈 0.05). Expression intensity of 114 protein spots was significantly greater in the injury group compared with the control group (P〈 0.05); 9 of the 114 protein spots were identified and peptJde matching scores of 8 spots were 〉 61 (P 〈 0.05). Protein types were identified and included cellular retinol binding protein, brain fatty acid binding protein 7, $100 calcium binding protein All, 60S acidic ribosomal protein P2, calponin 3, breast carcinoma amplified sequence 2 homolog, eukaryotic translation initiation factor 1A, and hypothetical protein LOC685814. Western blot detection revealed brain fatty acid binding protein 7 expression in cortical astrocytes, which increased with injury time compared with the control group (P 〈 0.05). CONCLUSION: Results from this study showed morphological and proteomic changes in cortical astrocytes following fluid percussion injury. Brain fatty acid binding protein 7 was expressed in astrocytes and possibly played an important role in injury repair. Mass-spectrum identified differentially expressed proteins that correlated with cell metabolism regulation, signal transduction, and translation initiation, and could serve as specific biological markers of brain injury.
基金supported by the National Natural Science Foundation of China(Nos.32070940 and 81991491)the China Postdoctoral Science Foundation(No.2021M700115)+2 种基金the Postdoctoral Innovation Talents Support Program(No.BX20220189,China)the Science and Technology Planning Project of Fujian Province(No.2022L3080,China)the CAMS Innovation Fund for Medical Sciences(No.2019RU022,China).
文摘T cell-redirecting bispecific antibodies are specifically designed to bind to tumor-associated antigens,thereby engaging with CD3 on the T cell receptor.This linkage between tumor cells and T cells actively triggers T cell activation and initiates targeted killing of the identified tumor cells.These antibodies have emerged as one of the most promising avenues within tumor immunotherapy.However,despite success in treating hematological malignancies,significant advancements in solid tumors have yet to be explored.In this review,we aim to address the critical challenges associated with T cellredirecting bispecific antibodies and explore novel strategies to overcome these obstacles,with the ultimate goal of expanding the application of this therapy to include solid tumors.