期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Study on the energy level limitations of triplet-triplet annihilation upconversion with anthracene-isomerized dimers as annihilators
1
作者 Shanshan Liu Tingting Gou +4 位作者 xiaojuan song Riming Hu Heyuan Liu Xiyou Li Xuchuan Jiang 《ChemPhysMater》 2024年第2期187-193,共7页
The enhancement in the efficiency of triplet-triplet annihilation upconversion(TTA-UC)is mainly determined by the triplet energy transfer(TET)and triplet-triplet annihilation(TTA)between the sensitizers and annihilato... The enhancement in the efficiency of triplet-triplet annihilation upconversion(TTA-UC)is mainly determined by the triplet energy transfer(TET)and triplet-triplet annihilation(TTA)between the sensitizers and annihilators.The TET process works efficiently by adjusting the concentration ratio of the sensitizers and annihilators.The efficiency of TTA is determined by the properties of the annihilator.Because TTA is a Dexter-type energy transfer and is affected by the diffusion rate,the energy levels of the excited states and the molecular size are both crucial in TTA.In this study,four isomerized dimers of 9,10-diphenlanthracene(DPA)and anthracene(An)were designed and prepared as annihilators for TTA-UC.The singlet and triplet energy levels could be adjusted by altering the connection position while maintaining the molecular weight and size.When PtOEP was used as the sensitizer,the maximum upconversion efficiency of 9-[4-(9-anthracenyl)phenyl]-10-phenylanthracene(9DPA-9An)was~11.18%.This is four times higher than that of 9,10-diphenyl-2,9-bianthracene(2DPA-9An,2.63%).The calculation of the energies of T_(1)and the higher triplet state(T_(3),because E(T_(2))is similar to the E(T)of these dimers)for these dimers has provided insights into the underlying reasons.These indicated that the energy gap value of 2×E(T_(1))-E(T_(3))is the determining factor for TTA efficiency.This work may provide a better understanding of the excited-state energy levels,which is crucial for designing novel annihilators to enhance the TTA-UCefficiency. 展开更多
关键词 UPCONVERSION ANNIHILATOR Triplet-triplet annihilation Energy levels
原文传递
Using X-ray computed tomography and micro-Raman spectrometry to measure individual particle surface area, volume, and morphology towards investigating atmospheric heterogeneous reactions 被引量:1
2
作者 Mingjin Wang Nan Zheng +6 位作者 Tong Zhu Jing Shang Ting Yu xiaojuan song Defeng Zhao Yong Guan Yangchao Tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第7期23-32,共10页
Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogen... Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogeneous reactions usually have large variations and may not be relevant to real atmospheric conditions. One of the major reasons for this is the use of bulk samples in laboratory experiments, while particles in the atmosphere are suspended individually. A number of technologies have been developed recently to study heterogeneous reactions on the surfaces of individual particles. Precise measurements on the reactive surface area, volume, and morphology of individual particles are necessary for calculating the uptake coefficient, quantifying reactants and products, and understanding the reaction mechanism better. In this study, for the first time we used synchrotron radiation X-ray computed tomography(XCT) and micro-Raman spectrometry to measure individual CaCO_3 particle morphology, with sizes ranging from 3.5–6.5 μm. Particle surface area and volume were calculated using a reconstruction method based on software threedimensional(3-D) rendering. The XCT was first validated with high-resolution fieldemission scanning electron microscopy(FE-SEM) to acquire accurate CaCO_3 particle surface area and volume estimates. Our results showed an average difference of only 6.1% in surface area and 3.2% in volume measured either by micro-Raman spectrometry or X-ray tomography. X-ray tomography and FE-SEM can provide more morphological details of individual Ca CO3 particles than micro-Raman spectrometry. This study demonstrated that X-ray computed tomography and micro-Raman spectrometry can precisely measure the surface area, volume, and morphology of an individual particle. 展开更多
关键词 Heterogeneous reactions Individual CaCO3 particle Micro-Raman spectrometry Synchrotron radiation X-ray computed tomography MORPHOLOGY Surface area VOLUME
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部