The enhancement in the efficiency of triplet-triplet annihilation upconversion(TTA-UC)is mainly determined by the triplet energy transfer(TET)and triplet-triplet annihilation(TTA)between the sensitizers and annihilato...The enhancement in the efficiency of triplet-triplet annihilation upconversion(TTA-UC)is mainly determined by the triplet energy transfer(TET)and triplet-triplet annihilation(TTA)between the sensitizers and annihilators.The TET process works efficiently by adjusting the concentration ratio of the sensitizers and annihilators.The efficiency of TTA is determined by the properties of the annihilator.Because TTA is a Dexter-type energy transfer and is affected by the diffusion rate,the energy levels of the excited states and the molecular size are both crucial in TTA.In this study,four isomerized dimers of 9,10-diphenlanthracene(DPA)and anthracene(An)were designed and prepared as annihilators for TTA-UC.The singlet and triplet energy levels could be adjusted by altering the connection position while maintaining the molecular weight and size.When PtOEP was used as the sensitizer,the maximum upconversion efficiency of 9-[4-(9-anthracenyl)phenyl]-10-phenylanthracene(9DPA-9An)was~11.18%.This is four times higher than that of 9,10-diphenyl-2,9-bianthracene(2DPA-9An,2.63%).The calculation of the energies of T_(1)and the higher triplet state(T_(3),because E(T_(2))is similar to the E(T)of these dimers)for these dimers has provided insights into the underlying reasons.These indicated that the energy gap value of 2×E(T_(1))-E(T_(3))is the determining factor for TTA efficiency.This work may provide a better understanding of the excited-state energy levels,which is crucial for designing novel annihilators to enhance the TTA-UCefficiency.展开更多
Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogen...Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogeneous reactions usually have large variations and may not be relevant to real atmospheric conditions. One of the major reasons for this is the use of bulk samples in laboratory experiments, while particles in the atmosphere are suspended individually. A number of technologies have been developed recently to study heterogeneous reactions on the surfaces of individual particles. Precise measurements on the reactive surface area, volume, and morphology of individual particles are necessary for calculating the uptake coefficient, quantifying reactants and products, and understanding the reaction mechanism better. In this study, for the first time we used synchrotron radiation X-ray computed tomography(XCT) and micro-Raman spectrometry to measure individual CaCO_3 particle morphology, with sizes ranging from 3.5–6.5 μm. Particle surface area and volume were calculated using a reconstruction method based on software threedimensional(3-D) rendering. The XCT was first validated with high-resolution fieldemission scanning electron microscopy(FE-SEM) to acquire accurate CaCO_3 particle surface area and volume estimates. Our results showed an average difference of only 6.1% in surface area and 3.2% in volume measured either by micro-Raman spectrometry or X-ray tomography. X-ray tomography and FE-SEM can provide more morphological details of individual Ca CO3 particles than micro-Raman spectrometry. This study demonstrated that X-ray computed tomography and micro-Raman spectrometry can precisely measure the surface area, volume, and morphology of an individual particle.展开更多
基金supported by the National Natural Science Foundation of China(22133006,21703287)the Natural Science Foundation of Shandong Province(ZR2023QB067,ZR2022MB065)+1 种基金the Science and Technology Program of the University of Jinan(XKY2068-140200568)Major Subject of the University of Jinan(1420702).
文摘The enhancement in the efficiency of triplet-triplet annihilation upconversion(TTA-UC)is mainly determined by the triplet energy transfer(TET)and triplet-triplet annihilation(TTA)between the sensitizers and annihilators.The TET process works efficiently by adjusting the concentration ratio of the sensitizers and annihilators.The efficiency of TTA is determined by the properties of the annihilator.Because TTA is a Dexter-type energy transfer and is affected by the diffusion rate,the energy levels of the excited states and the molecular size are both crucial in TTA.In this study,four isomerized dimers of 9,10-diphenlanthracene(DPA)and anthracene(An)were designed and prepared as annihilators for TTA-UC.The singlet and triplet energy levels could be adjusted by altering the connection position while maintaining the molecular weight and size.When PtOEP was used as the sensitizer,the maximum upconversion efficiency of 9-[4-(9-anthracenyl)phenyl]-10-phenylanthracene(9DPA-9An)was~11.18%.This is four times higher than that of 9,10-diphenyl-2,9-bianthracene(2DPA-9An,2.63%).The calculation of the energies of T_(1)and the higher triplet state(T_(3),because E(T_(2))is similar to the E(T)of these dimers)for these dimers has provided insights into the underlying reasons.These indicated that the energy gap value of 2×E(T_(1))-E(T_(3))is the determining factor for TTA efficiency.This work may provide a better understanding of the excited-state energy levels,which is crucial for designing novel annihilators to enhance the TTA-UCefficiency.
基金supported by the Chinese Ministry of Science and Technology(No.2008AA062503)the National Natural Science Foundation Committee of China(Nos.41421064,20637020)the China Postdoctoral Science Foundation(No.20100470166)
文摘Heterogeneous reactions on the aerosol particle surface in the atmosphere play important roles in air pollution, climate change, and global biogeochemical cycles. However, the reported uptake coefficients of heterogeneous reactions usually have large variations and may not be relevant to real atmospheric conditions. One of the major reasons for this is the use of bulk samples in laboratory experiments, while particles in the atmosphere are suspended individually. A number of technologies have been developed recently to study heterogeneous reactions on the surfaces of individual particles. Precise measurements on the reactive surface area, volume, and morphology of individual particles are necessary for calculating the uptake coefficient, quantifying reactants and products, and understanding the reaction mechanism better. In this study, for the first time we used synchrotron radiation X-ray computed tomography(XCT) and micro-Raman spectrometry to measure individual CaCO_3 particle morphology, with sizes ranging from 3.5–6.5 μm. Particle surface area and volume were calculated using a reconstruction method based on software threedimensional(3-D) rendering. The XCT was first validated with high-resolution fieldemission scanning electron microscopy(FE-SEM) to acquire accurate CaCO_3 particle surface area and volume estimates. Our results showed an average difference of only 6.1% in surface area and 3.2% in volume measured either by micro-Raman spectrometry or X-ray tomography. X-ray tomography and FE-SEM can provide more morphological details of individual Ca CO3 particles than micro-Raman spectrometry. This study demonstrated that X-ray computed tomography and micro-Raman spectrometry can precisely measure the surface area, volume, and morphology of an individual particle.