Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to ...Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to obtain multi-complexiton solutions and explore the interaction among the solutions.These wave functions are then employed to infer the influence of background flow on the propagation of Rossby waves,as well as the characteristics of propagation in multi-wave running processes.Additionally,we generated stereogram drawings and projection figures to visually represent these solutions.The dynamical behavior of these solutions is thoroughly examined through analytical and graphical analyses.Furthermore,we investigated the influence of the generalized beta effect and the Coriolis parameter on the evolution of Rossby waves.展开更多
Self-doping cathode interfacial layers(CILs) with both favorable electron injection and transport characteristics meet the key requirement for realizing high-performance optoelectronic devices with simplified structur...Self-doping cathode interfacial layers(CILs) with both favorable electron injection and transport characteristics meet the key requirement for realizing high-performance optoelectronic devices with simplified structures. Herein, four different polypyridinium salts with tunable backbones, side chains and counterions are elaborately designed to afford them desirable film-forming property, polarity, structural rigidity and self-doping feature. All-solution-processed red quantum dot light-emitting diodes(QLEDs) employing them as bifunctional CILs render remarkably improved device performances in contrast to the typical CIL material of poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN).The maximum external quantum efficiency of 2.74% achieved in this work represents one of the best values among the all-solution-processed QLEDs with individual organic CILs.展开更多
基金Supported by the National Natural Science Foundation of China(No.32360249)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2022QN01003)+2 种基金the University Scientific Research Project of Inner Mongolia Autonomous Region of China(No.NJZY22484)the Scientific Research Improvement Project of Youth Teachers of Inner Mongolia Autonomous Region of China(No.BR230161)the Inner Mongolia Agricultural University Basic Discipline Scientific Research Launch Fund(No.JC2020003)。
文摘Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to obtain multi-complexiton solutions and explore the interaction among the solutions.These wave functions are then employed to infer the influence of background flow on the propagation of Rossby waves,as well as the characteristics of propagation in multi-wave running processes.Additionally,we generated stereogram drawings and projection figures to visually represent these solutions.The dynamical behavior of these solutions is thoroughly examined through analytical and graphical analyses.Furthermore,we investigated the influence of the generalized beta effect and the Coriolis parameter on the evolution of Rossby waves.
基金the financial support from the National Natural Science Foundation of China (Nos. 51803124and 62175189)Shenzhen Science and Technology Program (Nos.KQTD20170330110107046 and JCYJ20170818143831242)+2 种基金the Instrumental Analysis Center of Shenzhen University for Analytical Supportthe funding support from the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2019WNLOKF015)the Open Fund of Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province,Shantou University (No.KLPAOSM202003)。
文摘Self-doping cathode interfacial layers(CILs) with both favorable electron injection and transport characteristics meet the key requirement for realizing high-performance optoelectronic devices with simplified structures. Herein, four different polypyridinium salts with tunable backbones, side chains and counterions are elaborately designed to afford them desirable film-forming property, polarity, structural rigidity and self-doping feature. All-solution-processed red quantum dot light-emitting diodes(QLEDs) employing them as bifunctional CILs render remarkably improved device performances in contrast to the typical CIL material of poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)](PFN).The maximum external quantum efficiency of 2.74% achieved in this work represents one of the best values among the all-solution-processed QLEDs with individual organic CILs.