期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Tailoring of thermal expansion and phase transition temperature of ZrW_(2)O_8 with phosphorus and enhancement of negative thermal expansion of ZrW_(1.5)P_(0.5)O_(7.75)
1
作者 张晨骏 何小可 +1 位作者 闵志宇 李保忠 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期696-700,共5页
ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adoptin... ZrW_(2)O_(8)is a typical isotropic negative thermal expansion material with cubic structure.However,quenching preparation,pressure phase transition and metastable structure influence its practical applications.Adopting P to part-substitute W for ZrW_(2-x)P_(x)O_(8-0.5x)has decreased the sintering temperature and avoided the quenching process.When x=0.1,ZrW_(1.9)P_(0.1)O_(7.95)with a stable cubic structure can be obtained at 1150℃.The thermal expansion coefficient is tailored with the P content,and phase transition temperature is lowered.When x=0.5,thermal expansion coefficient attains-13.6×10^(-6)℃^(-1),ZrW_(1.5)P_(0.5)O_(7.75)exhibits enhance negative thermal expansion property.The difference of electronegativity leads to the decrease of phase transition temperature with the increase of P content.The different radii of ions lead to new structure of materials when P substitutes more.The results suggest that the P atom plays the stabilization role in the crystal structure of ZrW_(2-x)P_(x)O_(8-0.5x). 展开更多
关键词 tailored thermal expansion phase transition negative thermal expansion stabilization role XRD
下载PDF
Conductive property of Zr_(0.1)Fe_(0.9)V_(1.1)Mo_(0.9)O_7 with low thermal expansion
2
作者 何小可 戚恒 +3 位作者 徐启 刘献省 许磊 袁保合 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第5期244-248,共5页
Low thermal expansion materials are mostly ceramics with low conductive property, which limits their applications in electronic devices. The poor conductive property of ceramic ZrV_2 O_7 could be improved by bi-substi... Low thermal expansion materials are mostly ceramics with low conductive property, which limits their applications in electronic devices. The poor conductive property of ceramic ZrV_2 O_7 could be improved by bi-substitution of Fe and Mo for Zr and V, accompanied with low thermal expansion. Zr_(0.1) Fe_(0.9) V_(1.1 )Mo_(0.9 )O_7 has electrical conductivity of 8.2× 10^(-5) S/cm and 9.41× 10^(-4) S/cm at 291 K and 623 K, respectively. From 291 K to 413 K, thermal excitation leads to the increase of carrier concentration, which causes the rapid decrease of resistance. At 413–533 K, the conductivity is unchanged due to high scattering probability and a slowing increase of carrier concentration. The conductivity rapidly increases again from533 K to 623 K due to the intrinsic thermal excitation. The thermal expansion coefficient of Zr_(0.1) Fe_(0.9) V_(1.1 )Mo_(0.9 )O_7 is as low as 0.72× 10^(-6 )K^(-1) at 140–700 K from the dilatometer measurement. These properties suggest that Zr_(0.1) Fe_(0.9) V_(1.1 )Mo_(0.9 )O_7 has attractive application in electronic components. 展开更多
关键词 low THERMAL EXPANSION CONDUCTIVITY THERMAL EXCITATION electric IMPEDANCE
下载PDF
Wind Field Flow Characteristics Analysis of T4-72 Type Centrifugal Fan
3
作者 xiaoke he Ding Tian Xiaoyong Song 《Open Journal of Fluid Dynamics》 2019年第3期241-252,共12页
In order to explore the internal wind field flow characteristics of T4-72 type centrifugal fan, the three-dimensional model was established based on PRO/E software. Combined with computational fluid Dynamics Software ... In order to explore the internal wind field flow characteristics of T4-72 type centrifugal fan, the three-dimensional model was established based on PRO/E software. Combined with computational fluid Dynamics Software Fluent 6.3, the standard model and SIMPLEC algorithm were used to simulate the wind field inside the fan. Analysis of the flow characteristics, velocity distributed and pressure distributed of the internal fluid model of the T4-72 centrifugal fan, combined with the theoretical formula to obtain the full pressure, power and efficiency performance parameters of the fan. The centrifugal fan performance curve is drawn. While compared with the experimental data, it is found that the internal flow disturbance is strong when the fan is running under low load condition and high load condition, which affects the performance of the fan and reduces the life of the fan. The numerical simulation results are consistent with the experimental results. The overall performance parameters of the fan are in good agreement, verifying the reliability of the simulation results;when the fan works between 1 - 1.4 times the rated flow rate, it can obtain a more stable flow field while maintaining higher efficiency, which provides a new idea for the optimization of the subsequent fan. 展开更多
关键词 CENTRIFUGAL FAN NUMERICAL Simulation WIND Field Flow ANALYSIS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部