A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as ...A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.展开更多
A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(...A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ)).The characteristics of CPM showed a porous structure,well dispersed MnFe_(2) O_(4),and several of hydroxyl and amino groups(-OH,-NH_(2)).Batch experiments demonstrated that the best adsorption property of As(Ⅲ),Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ) was achieved within 8 h with maximum adsorption capacities of 9.90,9.73,43.94,and 11.98 mg/g,respectively.Competitive and synergistic effects(particularly precipitation) were included in the co-adsorption mechanism of As(Ⅲ) and heavy metals.Thereinto,As(Ⅲ) was partly oxidized by MnFe_(2) O_(4) to As(V),and both were coordinated on MnFe_(2) O_(4) nanoparticles.Pb(Ⅱ) could also bind to MnFe_(2) O_(4) by ion exchange and electrostatic attraction.Furthermore,Cd(Ⅱ) and Cu(Ⅱ) tended to be coordinated on chitosan.Therefore,CPM can serve as a remediation material for water and soil co-contaminated with As(Ⅲ) and heavy metals.展开更多
基金funded by the National Science Foundation of China(No.51704028)the Key R&D Program of Yunnan Province(No.2018IB027)。
文摘A novel method of pellet calcification roasting-H_(2)SO_(4) leaching was proposed to efficiently separate and extract vanadium(V)from vanadium-titanium(V-Ti)magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS)and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS)analyses showed that V^(3+)was oxidized to V^(5+)after roasting at 1200℃,and V^(5+)was then leached by H_(2)SO_(4).X-ray diffraction(XRD)analyses and single factor experiment revealed a minimal amount of dissolved Fe_(2)O_(3) during H_(2)SO_(4) leaching.Therefore,a high separation degree of V and iron(Fe)from V-Ti magnetite concentrate was achieved through H_(2)SO_(4) leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.
基金funded by the National Key Research and Development Project (No. 2020YFC1807700)the National Key Research and Development Project (No. 2019YFC1805900)+4 种基金the Youth Fund Project of GRINM (No. 12008)the Youth Fund Project of GRINM (No. 12119)the Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-2020-07)the Open Foundation of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (No. 2021P4FZG13A)the National Natural Science Foundation of China (No. 51704028)。
文摘A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ)).The characteristics of CPM showed a porous structure,well dispersed MnFe_(2) O_(4),and several of hydroxyl and amino groups(-OH,-NH_(2)).Batch experiments demonstrated that the best adsorption property of As(Ⅲ),Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ) was achieved within 8 h with maximum adsorption capacities of 9.90,9.73,43.94,and 11.98 mg/g,respectively.Competitive and synergistic effects(particularly precipitation) were included in the co-adsorption mechanism of As(Ⅲ) and heavy metals.Thereinto,As(Ⅲ) was partly oxidized by MnFe_(2) O_(4) to As(V),and both were coordinated on MnFe_(2) O_(4) nanoparticles.Pb(Ⅱ) could also bind to MnFe_(2) O_(4) by ion exchange and electrostatic attraction.Furthermore,Cd(Ⅱ) and Cu(Ⅱ) tended to be coordinated on chitosan.Therefore,CPM can serve as a remediation material for water and soil co-contaminated with As(Ⅲ) and heavy metals.