期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
In-situ Horizontal Extrusion Test of Herbaceous Root-Soil with Different Root Types
1
作者 Fangcui Liu Shengwen Qi +8 位作者 Shenglin Qi xiaokun hou Yanrong Li Guangming Luo Lei Xue Xueliang Wang Juanjuan Sun Songfeng Guo Bowen Zheng 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期918-928,共11页
The influence of different types of roots on the soil is complex and still remains unclear.Four in-situ extrusion tests were conducted on two types of root systems,namely fibrous and tap root system,for three plants,E... The influence of different types of roots on the soil is complex and still remains unclear.Four in-situ extrusion tests were conducted on two types of root systems,namely fibrous and tap root system,for three plants,Eleusine indica,Potentilla anserine,and Artemisia argyi,according to the classification in Botany,and the thrust-displacement curves and failure patterns of different samples were analysed by comparison to fill the aforementioned gap.Results reveal that the roots can reduce the characteristics of soil brittleness and enhance its capability to resist large deformation,and different root types contribute different effects to the strain-hardening behavior of the root-soil mass.The contribution of the fibrous root system to strength is limited,whilst the tap root system substantially enhances strength and stiffness.Results of failure patterns show that fibrous and tap root systems affect soil solidification and surface cracking reduction.However,the effect of the tap root system depends on the composition of lateral and tap roots:long and rich lateral roots are effective for resisting the creation of cracks,but thick tap roots with few and thin lateral roots may lead to several surface cracks. 展开更多
关键词 root types fibrous root tap root in-situ horizontal extrusion test root-soil cracks slope protection.
原文传递
Investigation on the Deformation and Failure Patterns of Loess Cut Slope Based on the Unsaturated Triaxial Test in Yan'an,China
2
作者 Lina Ma Shengwen Qi +2 位作者 Songfeng Guo Qiangbing Huang xiaokun hou 《Journal of Earth Science》 SCIE CAS CSCD 2024年第1期235-247,共13页
The large-scale implementation of the Gully Stabilization and Land Reclamation(GSLR)project induces various failures of loess slopes due to excavation in Yan'an,China.However,the deformation and failure behavior o... The large-scale implementation of the Gully Stabilization and Land Reclamation(GSLR)project induces various failures of loess slopes due to excavation in Yan'an,China.However,the deformation and failure behavior of these excavated loess slopes have not been fully understood.In this study,field investigation was undertaken for analyzing the distributions and failure features of excavation-induced loess slope failures.It is found that plastic failure mainly occurs in Q_(3) loess layers and brittle failure in Q_(2).To understand the underlying failure mechanism,a series of triaxial shear tests were conducted on intact Q_(3) and Q_(2) loess samples that with different water contents,namely natural water content(natural),dry side of the natural value(drying 5%),and wet side(wetting 5%).The characteristics of stress-strain curves and failure modes of the samples were analyzed.Results show that the stress-strain curves of Q_(2) samples are dominated by strain-softening characteristics,while Q_(3) samples mainly exhibit strain-harden features except in the drying state.Correspondingly,shear failures of Q_(3) specimens are mainly caused by shear crack planes(single,X or V-shaped).For Q_(2) loess,the dominance of tensile cracks is observed on the surface of damaged specimens.These disclose the different failure modes of excavated slopes located in different strata,that is,the arc sliding failure of Q_(3) loess slopes and the stepped tensile failure of Q_(2) loess slopes,and are helpful in the design and management of the ongoing GSLR projects in the Loess Plateau. 展开更多
关键词 loess slope slope stability failure patterns DEFORMATION
原文传递
压实黄土场地湿陷沉降机理与黄土高原平山造城适宜性 被引量:1
3
作者 祁生文 侯晓坤 +8 位作者 于永堂 张亚国 胡燮 张琳鑫 李志清 郭松峰 张帆宇 李同录 彭建兵 《科学通报》 EI CAS CSCD 北大核心 2023年第14期1844-1860,共17页
黄土高原城市用地紧张与用地需求日益增大的矛盾使得平山造城工程应运而生,大规模平山造城工程会引起场地水文环境变化,诱发填土地基失稳、建筑物破坏等,其工程长期适宜性是人们最关切的问题.通过现场调研、原位监测、室内试验、模型试... 黄土高原城市用地紧张与用地需求日益增大的矛盾使得平山造城工程应运而生,大规模平山造城工程会引起场地水文环境变化,诱发填土地基失稳、建筑物破坏等,其工程长期适宜性是人们最关切的问题.通过现场调研、原位监测、室内试验、模型试验、数值模拟和InSAR分析等工作,探究了压实黄土场地湿陷沉降机理及黄土高原平山造城工程适宜性.研究结果发现,场地压实黄土的物理力学性质和微观结构同天然黄土差异较大,其力学性质差、孔隙连通性差、空间变异性大;湿陷变形本质为含水率增大引起土体刚度降低而发生的压密变形,湿陷过程中压实黄土的结构变化整体上表现为颗粒间孔隙的局部压密,颗粒及孔隙形态基本不变;非饱和压实黄土的蠕变特性同屈服应力与上覆荷载的大小密切相关,增大压实土体的干密度可提高屈服应力,缩短蠕变稳定时间,还可显著降低土体的渗透特性;典型平山造城场地厚层压实黄土中的含水状态基本能维持长期稳定,有缓慢的向下水流补给地下水;场地累积变形量随填方土厚度增大而增大,地表变形减缓,沉降速率递减,预测工后15年场地变形可达稳定;增大压实土体干密度和合理设置地下水排水设施可有效减小地表总变形量、变形稳定期和局部破坏.研究结果论证了整体地基的长期稳定性和局部灾害的工程可控性,从理论和实践上证实平山造城工程基本可行,提出了黄土高原平山造城工程的适宜性原则,为未来的平山造城工程提供科学指导. 展开更多
关键词 黄土高原 平山造城 水分迁移 湿陷机理 沉降规律
原文传递
Long-Term Settlement Characterization of High-Filling Foundation in the Mountain Excavation and City Construction Area of the Yan’an New District,China
4
作者 xiaokun hou Shengwen Qi +1 位作者 Yongtang Yu Jianguo Zheng 《Journal of Earth Science》 SCIE CAS CSCD 2023年第6期1908-1915,共8页
Mountain Excavation and City Construction(MECC)represents a prominent anthropogenic endeavor aimed at facilitating urban expansion in the Loess Plateau of China.It is important to comprehend the long-term settlement b... Mountain Excavation and City Construction(MECC)represents a prominent anthropogenic endeavor aimed at facilitating urban expansion in the Loess Plateau of China.It is important to comprehend the long-term settlement behavior at MECC engineering sites to effectively assess the project’s success in reshaping landscapes and expanding urban areas.In this study,a typical MECC project,specifically the upstream area of the Liujiagou Valley within the new district of Yan’an City,is selected as a case study to investigate long-term settlement characteristics.The research involved conducting creep tests on soil samples with varying dry densities and moisture content and continuous in-situ monitoring of ground surface settlement at 17 specific points.Furthermore,a numerical model was developed and calibrated using the in-situ monitoring data to predict the long-term settlement.The findings reveal that an increase in soil dry density and a decrease in soil water content contribute to reduced deformation.Notably,settlement primarily manifests within the filled areas,with greater soil thickness exacerbating settlement effects.Over time,cumulative settlement exhibits a progressively diminishing rate of deformation until it attains a stable state.These results provide insights for assessing the long-term stability of MECC projects,facilitating decision-making in future endeavors within this region. 展开更多
关键词 Loess Plateau of China long-term settlement in-situ observation numerical analysis engineering geology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部