We present a lattice quantum chromodynamics(QCD)simulation with 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes L,at a~0.055 fm.The results show that the scalar and pesudos...We present a lattice quantum chromodynamics(QCD)simulation with 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes L,at a~0.055 fm.The results show that the scalar and pesudoscalar 2-point correlator with a valence pion mass of approximately 230 MeV become degenerated at L≤1.0 fm,and such an observation suggests that the spontaneous chiral symmetry breaking disappears effectively at this point.At the same time,the mass gap between the nucleon and pion masses remains larger thanΛQCDin the entire L∈[0.2,0.7]fm range.展开更多
基金supported in part by NSFC Grant Nos.12293060,12293062,12293065 and 12047503the science and education integration young faculty project of the University of Chinese Academy of Sciences,the Strategic Priority Research Program of the Chinese Academy of Sciences,Grant Nos.XDB34030303 and YSBR-101NSFC-DFG joint grant under Grant Nos.12061131006 and SCHA 458/22。
文摘We present a lattice quantum chromodynamics(QCD)simulation with 2+1+1 flavor full QCD ensembles using near-physical quark masses and different spatial sizes L,at a~0.055 fm.The results show that the scalar and pesudoscalar 2-point correlator with a valence pion mass of approximately 230 MeV become degenerated at L≤1.0 fm,and such an observation suggests that the spontaneous chiral symmetry breaking disappears effectively at this point.At the same time,the mass gap between the nucleon and pion masses remains larger thanΛQCDin the entire L∈[0.2,0.7]fm range.