Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to m...Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.展开更多
Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbo...Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.展开更多
The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current in...The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.展开更多
For the thorough research on coal metamorphism impact on gas adsorption capacity, this paper collected and summarized parameters of experimental adsorption isotherms, coal maceral, proximate analysis and ultimate anal...For the thorough research on coal metamorphism impact on gas adsorption capacity, this paper collected and summarized parameters of experimental adsorption isotherms, coal maceral, proximate analysis and ultimate analysis obtained from National Engineering Research Center of Coal Gas Control and related literatures at home and abroad, systematically discussed the coal rank effect on its physicochemical properties and methane adsorption capacity, in which the coal rank was shown in Vitrinite reflectance, furthermore, obtained the Semi-quantitative relationship between physicochemical properties of coal and methane adsorption capacity.展开更多
The limited molecular classifications and disease signatures of osteoarthritis(OA)impede the development of prediagnosis and targeted therapeutics for OA patients.To classify and understand the subtypes of OA,we colle...The limited molecular classifications and disease signatures of osteoarthritis(OA)impede the development of prediagnosis and targeted therapeutics for OA patients.To classify and understand the subtypes of OA,we collected three types of tissue including cartilage,subchondral bone,and synovium from multiple clinical centers and constructed an extensive transcriptome atlas of OA patients.By applying unsupervised clustering analysis to the cartilage transcriptome,OA patients were classified into four subtypes with distinct molecular signatures:a glycosaminoglycan metabolic disorder subtype(C1),a collagen metabolic disorder subtype(C2),an activated sensory neuron subtype(C3),and an inflammation subtype(C4).Through ligand-receptor crosstalk analysis of the three knee tissue types,we linked molecular functions with the clinical symptoms of different OA subtypes.For example,the Gene Ontology functional term of vasculature development was enriched in the subchondral bone-cartilage crosstalk of C2 and the cartilage-subchondral bone crosstalk of C4,which might lead to severe osteophytes in C2 patients and apparent joint space narrowing in C4 patients.Based on the marker genes of the four OA subtypes identified in this study,we modeled OA subtypes with two independent published RNA-seq datasets through random forest classification.The findings of this work contradicted traditional OA diagnosis by medical imaging and revealed distinct molecular subtypes in knee OA patients,which may allow for precise diagnosis and treatment of OA.展开更多
This paper analyzes the urban spatial structure of Tarim River Basin from the perspectives of urbanization, urban density, grading scales and spatial evolution patterns, using geographical theories and methods, such a...This paper analyzes the urban spatial structure of Tarim River Basin from the perspectives of urbanization, urban density, grading scales and spatial evolution patterns, using geographical theories and methods, such as fractal theory, principle component analysis, urbanization imbalance index, urban scale imbalance indicator, and urban spatial interaction. The results show that the urban spatial structure displays balanced distribution in the overall pattern, while an imbalanced distribution in each region. The development of town pattern tends to be gathering to the central towns in the oasis of Tarim River Basin and a development axis has begun to form along the southern Xinjiang railway. Based on the division of urban hinterland, and the development characteristics of oasis economy, this paper puts forward an urban spatial organization model. This model uses 'breakpoint model' and divides Tarim River Basin into five urban clusters: Korla urban cluster, Kuqa urban cluster, Aksu urban cluster, Kashgar urban cluster and Hotan urban cluster. As a conclusion, this article puts forward an overall framework of urban spatial organization in Tarim River Basin: 'one axis, double core, and five groups'.展开更多
The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with ...The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with the GaSb(100)substrates.The thickness of the GaSb_(1-x)Bi_(x) layers of the samples are 5 and 10 nm,respectively.For comparison,the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer(ML).The surface of 5 nm GaSb_(1-x)Bi_(x) film reserves the same terraced morphology as the buffer layer.In contrast,the morphology of the 10 nm GaSb_(1-x)Bi_(x) film changes to the mound-like island structures with a height of a few MLs.The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film.The statistical analysis with the scanning tunneling spectroscopy(STS)measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb_(1-x)Bi_(x) layer.展开更多
Desertification is a serious ecological problem leading to significant biodiversity loss,but how desertification drives shifts in life history and fitness of animals remains understudied.To clarify whether habitat des...Desertification is a serious ecological problem leading to significant biodiversity loss,but how desertification drives shifts in life history and fitness of animals remains understudied.To clarify whether habitat desertification causes shifts in life history strategies,we compared ecological factors and reproductive traits of Phrynocephalus przewalskii from three different desertification habitats-fixed dune,semi-fixed dune and mobile dune of a semi-arid region of Inner Mongolia,at the eastern edge of Hobq Desert,China.Our results showed a significant shift in the egg size-number trade-off of P.przewalskii in response to desertification,with lizards from the mobile dune habitat producing smaller clutches of larger eggs than lizards from the fixed and semi-fixed dune habitats.This life history shift is likely adaptive and driven by abiotic factors(temperature and precipitation)rather than biotic factors(food availability and lizard population density).Our study demonstrates that habitat desertification drives the shift in egg size-number trade-off in a lizard and highlights the importance of exploring the life history responses of animals to habitat desertification as well as to other traditionally well-studied factors like temperature,especially in the context of future global clima te change.展开更多
Volumetric combustion has been developed to realize a high substitution ratio of biomass in co-firing boilers, which features an intensive flue gas internal recirculation inside furnace. However, the characteristics o...Volumetric combustion has been developed to realize a high substitution ratio of biomass in co-firing boilers, which features an intensive flue gas internal recirculation inside furnace. However, the characteristics of NOx and SOx emissions in large-scale boilers with volumetric combustion were not fully clear. In this paper, an Aspen Plus model of volumetric combustion system was built up based on a co-firing boiler. In order to characterize the reductions of NOx and SOx, three biomass substitution ratios were involved, namely, 100% biomass, 45% biomass with 55% coal, and 100% coal. The effects of flue gas recirculation ratio, air preheating temperature, oxygen concentration, and fuel types on pollutants emission in the volumetric combustion system were investigated. According to the results, it was concluded the higher substitution ratio of biomass in a co-firing boiler, the lower emissions of NOx and SOx. Moreover, flue gas internal recirculation is an effective pathway for NOx reduction and an increased recirculation ratio resulted in a significant decreasing of NOx emission;however, the SOx increased slightly. The influences of air preheating temperature and O2 concentration on NOx emission were getting weak with increasing of recirculation ratio. When 10% or even higher of flue gas was recycled, it was observed that almost no NOx formed thermodynamically under all studied conditions. Finally, to reach a low emission level of NOx, less energy would be consumed during biomass combustion than coal combustion process for internal recirculation of flue gas.展开更多
Solar resource monitoring and evaluation is the foundation of informatization of photovoltaic power station. In 2016, China began to bring in high-precision solar resource monitoring technology which provides reliable...Solar resource monitoring and evaluation is the foundation of informatization of photovoltaic power station. In 2016, China began to bring in high-precision solar resource monitoring technology which provides reliable basic data for the photovoltaic informatization development. This paper systematically sorts out design basis, monitoring elements and system architecture of high-precision monitoring station, and analyzes operation effect of high-precision solar resource monitoring station from performance of solar radiation meter and prediction results of luminous power, which provide important data support for analysis of power generation efficiency of photovoltaic module, prediction of power generation of power station, evaluation of operation effect of power station, etc.展开更多
In this paper,we propose a method to deal with numerical integral by using two kinds of C^2 quasi-interpolation operators on the bivariate spline space,and also dis- cuss the convergence properties and error estimates...In this paper,we propose a method to deal with numerical integral by using two kinds of C^2 quasi-interpolation operators on the bivariate spline space,and also dis- cuss the convergence properties and error estimates.Moreover,the proposed method is applied to the numerical evaluation of 2-D singular integrals.Numerical exper- iments will be carried out and the results will be compared with some previously published results.展开更多
Interleukin I receptor associated kinase 1 (IRAK1) is a downstream signal molecule of activated MyD88 recruitment, which can activate Fas associated death domain protein (FADD) to induce apoptosis. IRAK1 can also acti...Interleukin I receptor associated kinase 1 (IRAK1) is a downstream signal molecule of activated MyD88 recruitment, which can activate Fas associated death domain protein (FADD) to induce apoptosis. IRAK1 can also activate tumor necrosis factor-related factor 6 (TRAF6) and induce the expression of a series of downstream specific genes. IRAK1 is an essential factor in the induction of mitochondrial division and necroptosis. In the current study, RNAi technique was used to silence IRAK1, and the apoptosis and necroptosis rate of SK-Hep1 cells were detected by flow cytometry. The apoptosis and the necroptosis pathway of hepatoma SK-Hep1 cells were blocked separately, and the expressions of FADD, RIP1 and TRAF6 genes were silenced separately. The results showed when the expression of IRAK1 was down-regulated, the apoptosis and necroptosis rate of SK-Hep1 cells were significantly increased. With silenced FADD, RIP1 and TRAF6, respectively, the expression of IRAK1 protein had no significant change. However, the expression of IRAK1 mRNA decreased significantly (p < 0.01) after the silencing of RIP1 and TRAF6 genes, while the IRAK1 mRNA did not change significantly after the silencing of FADD genes;when z-VAD-FMK was interfered, the expression of IRAK1 mRNA decreased significantly after the silencing of TRAF6 genes, while the IRAK1 mRNA did not change significantly after the silencing of FADD and RIP1genes. The study shows that RAK1 gene inhibits apoptosis and necroptosis in SK-Hep1 cells. TRAF6 gene affected the role of IRAK1 in apoptosis and necroptosis, RIP1 gene affected the role of IRAK1 in apoptosis, while FADD gene did not affect the role of IRAK1 in apoptosis and necroptosis.展开更多
The“Internet Plus”business model calls for the optimization of business education in higher education institutes.The fast pace of“Internet Plus”requires business students to have abundant interdisciplinary knowled...The“Internet Plus”business model calls for the optimization of business education in higher education institutes.The fast pace of“Internet Plus”requires business students to have abundant interdisciplinary knowledge,comprehensive modern business skills,habits of lifelong self-learning,and the courage to innovate.This paper proposes that higher education institutes should improve their business education programs in the following ways:firstly,form teaching alliances to provide interdisciplinary learning opportunities for business students;secondly,establish a social practice tutor team from excellent alumni;thirdly,build an online education platform for alumni to develop lifelong autonomous learning habits;finally,explore the three-tutor training model for business students.展开更多
With the wide spread of the epidemic,the long-term closed lifestyle and the sharp reduction of physical activities,many people have mental health problems such as panic,anxiety and depression.At present,there are few ...With the wide spread of the epidemic,the long-term closed lifestyle and the sharp reduction of physical activities,many people have mental health problems such as panic,anxiety and depression.At present,there are few studies on the effect of exercise on depression.Therefore,the study selected exercise intervention therapy and other intervention methods to evaluate the intervention effect of depression,and explored the effect of exercise intervention by evaluating depression scale and effective indicators.Hope this can provide a new idea for exercise intervention as an adjunctive therapy for depression on drug treatment.展开更多
Currently,clinically available coronary CT angiography(CCTA)derived fractional flow reserve(CT-FFR)is time-consuming and complex.We propose a novel artificial intelligence-based fully-automated,on-site CT-FFR technolo...Currently,clinically available coronary CT angiography(CCTA)derived fractional flow reserve(CT-FFR)is time-consuming and complex.We propose a novel artificial intelligence-based fully-automated,on-site CT-FFR technology,which combines the automated coronary plaque segmentation and luminal extraction model with reduced order 3 dimentional(3D)computational fluid dynamics.A total of 463 consecutive patients with 600 vessels from the updated China CT-FFR study in Cohort 1 undergoing both CCTA and invasive fractional flow reserve(FFR)within 90 d were collected for diagnostic performance evaluation.For Cohort 2,a total of 901 chronic coronary syndromes patients with index CT-FFR and clinical outcomes at 3-year follow-up were retrospectively analyzed.In Cohort 3,the association between index CT-FFR from triple-rule-out CTA and major adverse cardiac events in patients with acute chest pain from the emergency department was further evaluated.The diagnostic accuracy of this CT-FFR in Cohort 1 was 0.82 with an area under the curve of 0.82 on a per-patient level.Compared with the manually dependent CT-FFR techniques,the operation time of this technique was substantially shortened by 3 times and the number of clicks from about 60 to 1.This CT-FFR technique has a highly successful(>99%)calculation rate and also provides superior prediction value for major adverse cardiac events than CCTA alone both in patients with chronic coronary syndromes and acute chest pain.Thus,the novel artificial intelligencebased fully automated,on-site CT-FFR technique can function as an objective and convenient tool for coronary stenosis functional evaluation in the real-world clinical setting.展开更多
Background:During the COVID-19 pandemic,clinical trial recruitment could not be carried out due to travel restrictions,transmission risks and other factors,resulting in the stagnation of many ongoing or upcoming clini...Background:During the COVID-19 pandemic,clinical trial recruitment could not be carried out due to travel restrictions,transmission risks and other factors,resulting in the stagnation of many ongoing or upcoming clinical trials.Objective:An intelligent screening tool was developed using artificial intelligence technology to rapidly prescreen potential patients for phase I solid tumor drug clinical trials.Methods:A total of 429 screening process records were collected from 27 phase I solid tumor drug clinical trials at the First Affiliated Hospital of Bengbu Medical College from April 2018 to May 2021.Features of the experimental data were analyzed,and the collinearity(principal component analysis)and strong correlation(χ^(2)test)among features were eliminated.XGBoost,random forest,and naive Bayes were used to determine the weight importance of the features.Finally,prescreening models were constructed using a classification machine learning algorithm,and the optimal model was selected.Results:Among the 429 screening records,33 were generated by repeated subject participation in different clinical trials,and of the remaining 396 screening records,246(62.12%)were screened successfully.The gold standard for subject screening success was the final judgment made by the principal investigator(PI)based on the clinical trial protocol.A Venn diagram was used to identify the important feature intersections of the machine learning algorithms.After intersecting the top 15 characteristic variables of the different feature screening models,9 common variables were obtained:age,sex,distance from residence to the central institution,tumor histology,tumor stage,tumorectomy,interval from diagnosis/postoperative to screening,chemotherapy,and Eastern Cooperative Oncology Group(ECOG)score.To select the optimal subset,the 9 important feature variables were expanded to 12 and 15 feature subsets,and the performance of different feature subsets under different machine learning models was validated.The results showed that optimal performance,accuracy and practicability were achieved using XGBoost with the 12-feature subset.The final model could accurately predict the screening success rates in both internal(AUC=0.895)and external(AUC=0.796)validation and has been transformed into a convenient tool to facilitate its application in clinical settings.Subjects with a probability exceeding or equal to the threshold in the final model had a greater probability of being successfully screened.Conclusion:Based on the optimal model,we created an online prediction calculator and visualization app,the Intelligent Screening Service Platform(ISSP),which can rapidly screen patients for phase I solid tumor drug clinical trials.The IsSP can effectively solve the problems of space and time intervals.On the mobile terminal,matching between clinical trial projects and patients can be achieved,and the rapid screening of clinical trial subjects can be completed to obtain more clinical trial subjects.As an auxiliary tool,the ISSP optimizes the screening process of clinical trials and provides more convenient services for clinical investigators and patients.展开更多
1 Introduction Retrosynthesis aims to predict a set of reactants for producing given molecules[1],which plays a significant part in the biochemistry field,such as molecular pathway design and drug discovery.Although e...1 Introduction Retrosynthesis aims to predict a set of reactants for producing given molecules[1],which plays a significant part in the biochemistry field,such as molecular pathway design and drug discovery.Although existing methods perform better in solving this problem,most of these methods[2,3]only describe the molecules from one kind of perspective,such as they use Simplified Molecular Input Line Entry System(SMILES)strings[4]to represent the atomic components and the relationship between atoms of molecules or leverage Extended Connectivity Fingerprints(ECFPs)represent the information of the molecular sub-structure composition via binary vectors[5].展开更多
文摘Noble metal nanoparticles exhibit unique surface plasmon resonance dependent optical properties.On this basis,gold nanoparticles(AuNPs)encapsulated in metal–organic frameworks(MOFs)can form AuNPs@MOFs composites to modulate the optical properties of fluorescent molecules,which is less reported.In this paper,based on the fluorescence enhancement effect of AuNPs on 2-(2-hydroxyphenyl)-1H-benzimidazole(HPBI)molecules,zeolitic imidazolate framework-8(ZIF-8)crystals with structural stability were introduced.AuNPs@ZIF-8 exhibited a significantly pronounced fluorescence enhancement of the HPBI molecules.In addition,by comparing the fluorescence characteristics of the HPBI molecules adsorbed on AuNPs@ZIF-8 and those captured in AuNPs@ZIF-8,we found that the ZIF-8 can act as a spacer layer with highly effective near-field enhancement.All our preliminary results shed light on future research on the composite structures of noble metal particles and MOFs for fluorescent probes and sensing applications.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(SGSDJY00GPJS2100135).
文摘Driven by the goal of“carbon neutrality”and“emission peak”,effectively controlling system carbon emissions has become significantly important to governments around the world.To this end,a novel two-stage low-carbon economic scheduling framework that considers the coordinated optimization of ladder-type carbon trading and integrated demand response(IDR)is proposed in this paper for the integrated energy system(IES),where the first stage determines the energy consumption plan of users by leveraging the price-based electrical-heat IDR.In contrast,the second stage minimizes the system total cost to optimize the outputs of generations with consideration of the uncertainty of renewables.In addition,to fully exploit the system’s emission reduction potential,a carbon trading cost model with segmented CO_(2) emission intervals is built by introducing a reward-penalty ladder-type carbon trading mechanism,and the flexible thermal comfort elasticity of customers is taken into account by putting forward a predicted mean vote index on the load side.The CPLEX optimizer resolves the two-stage model,and the study results on a modified IES situated in North China show the proposed model can effectively reduce carbon emissions and guarantee economical efficiency operation of the system.
基金supported by the State Grid Shandong Electric Power Company Economic and Technical Research Institute Project(Grant No.SGSDJY00GPJS2100135).
文摘The DC distribution network system equipped with a large number of power electronic equipment exhibits weak damping characteristics and is prone to low-frequency and high-frequency unstable oscillations.The current interpretation of the oscillation mechanism has not been unified.Firstly,this paper established the complete statespace model of the distribution system consisting of a large number of electric vehicles,characteristic equation of the distribution network system is derived by establishing a state-space model,and simplified reduced-order equations describing the low-frequency oscillation and the high-frequency oscillation are obtained.Secondly,based on eigenvalue analysis,the oscillation modes and the influence of the key system parameters on the oscillation mode are studied.Besides,impacts of key factors,such as distribution network connection topology and number of dynamic loads,have been discussed to suppress oscillatory instability caused by inappropriate design or dynamic interactions.Finally,using the DC distribution example system,through model calculation and time-domain simulation analysis,the correctness of the aforementioned analysis is verified.
文摘For the thorough research on coal metamorphism impact on gas adsorption capacity, this paper collected and summarized parameters of experimental adsorption isotherms, coal maceral, proximate analysis and ultimate analysis obtained from National Engineering Research Center of Coal Gas Control and related literatures at home and abroad, systematically discussed the coal rank effect on its physicochemical properties and methane adsorption capacity, in which the coal rank was shown in Vitrinite reflectance, furthermore, obtained the Semi-quantitative relationship between physicochemical properties of coal and methane adsorption capacity.
基金the National Key R&D Program of China(2017YFA0104900)the National Natural Science Foundation of China(81630065,31830029,and 81802195)the China Postdoctoral Science Foundation(2017M621913).
文摘The limited molecular classifications and disease signatures of osteoarthritis(OA)impede the development of prediagnosis and targeted therapeutics for OA patients.To classify and understand the subtypes of OA,we collected three types of tissue including cartilage,subchondral bone,and synovium from multiple clinical centers and constructed an extensive transcriptome atlas of OA patients.By applying unsupervised clustering analysis to the cartilage transcriptome,OA patients were classified into four subtypes with distinct molecular signatures:a glycosaminoglycan metabolic disorder subtype(C1),a collagen metabolic disorder subtype(C2),an activated sensory neuron subtype(C3),and an inflammation subtype(C4).Through ligand-receptor crosstalk analysis of the three knee tissue types,we linked molecular functions with the clinical symptoms of different OA subtypes.For example,the Gene Ontology functional term of vasculature development was enriched in the subchondral bone-cartilage crosstalk of C2 and the cartilage-subchondral bone crosstalk of C4,which might lead to severe osteophytes in C2 patients and apparent joint space narrowing in C4 patients.Based on the marker genes of the four OA subtypes identified in this study,we modeled OA subtypes with two independent published RNA-seq datasets through random forest classification.The findings of this work contradicted traditional OA diagnosis by medical imaging and revealed distinct molecular subtypes in knee OA patients,which may allow for precise diagnosis and treatment of OA.
基金supported by West Light Foundation of the Chinese Academy of Sciences (XBBS200812)the Chinese Academy of Sciences Action-plan for West Development (KZCX2-XB2-03)
文摘This paper analyzes the urban spatial structure of Tarim River Basin from the perspectives of urbanization, urban density, grading scales and spatial evolution patterns, using geographical theories and methods, such as fractal theory, principle component analysis, urbanization imbalance index, urban scale imbalance indicator, and urban spatial interaction. The results show that the urban spatial structure displays balanced distribution in the overall pattern, while an imbalanced distribution in each region. The development of town pattern tends to be gathering to the central towns in the oasis of Tarim River Basin and a development axis has begun to form along the southern Xinjiang railway. Based on the division of urban hinterland, and the development characteristics of oasis economy, this paper puts forward an urban spatial organization model. This model uses 'breakpoint model' and divides Tarim River Basin into five urban clusters: Korla urban cluster, Kuqa urban cluster, Aksu urban cluster, Kashgar urban cluster and Hotan urban cluster. As a conclusion, this article puts forward an overall framework of urban spatial organization in Tarim River Basin: 'one axis, double core, and five groups'.
基金supported by the National Natural Science Foundation of China(Nos.61474073,61874069 and 61804157).
文摘The ultrahigh vacuum scanning tunneling microscope(STM)was used to characterize the GaSb_(1-x)Bi_(x) films of a few nanometers thickness grown by the molecular beam epitaxy(MBE)on the GaSb buffer layer of 100 nm with the GaSb(100)substrates.The thickness of the GaSb_(1-x)Bi_(x) layers of the samples are 5 and 10 nm,respectively.For comparison,the GaSb buffer was also characterized and its STM image displays terraces whose surfaces are basically atomically flat and their roughness is generally less than 1 monolayer(ML).The surface of 5 nm GaSb_(1-x)Bi_(x) film reserves the same terraced morphology as the buffer layer.In contrast,the morphology of the 10 nm GaSb_(1-x)Bi_(x) film changes to the mound-like island structures with a height of a few MLs.The result implies the growth mode transition from the two-dimensional mode as displayed by the 5 nm film to the Stranski-Krastinov mode as displayed by the 10 nm film.The statistical analysis with the scanning tunneling spectroscopy(STS)measurements indicates that both the incorporation and the inhomogeneity of Bi atoms increase with the thickness of the GaSb_(1-x)Bi_(x) layer.
基金supported by grants from the National Natural Science Foundation of China (31861143023, 31821001, and 31570526)China’s Biodiversity Observation Network (Sino-BON)
文摘Desertification is a serious ecological problem leading to significant biodiversity loss,but how desertification drives shifts in life history and fitness of animals remains understudied.To clarify whether habitat desertification causes shifts in life history strategies,we compared ecological factors and reproductive traits of Phrynocephalus przewalskii from three different desertification habitats-fixed dune,semi-fixed dune and mobile dune of a semi-arid region of Inner Mongolia,at the eastern edge of Hobq Desert,China.Our results showed a significant shift in the egg size-number trade-off of P.przewalskii in response to desertification,with lizards from the mobile dune habitat producing smaller clutches of larger eggs than lizards from the fixed and semi-fixed dune habitats.This life history shift is likely adaptive and driven by abiotic factors(temperature and precipitation)rather than biotic factors(food availability and lizard population density).Our study demonstrates that habitat desertification drives the shift in egg size-number trade-off in a lizard and highlights the importance of exploring the life history responses of animals to habitat desertification as well as to other traditionally well-studied factors like temperature,especially in the context of future global clima te change.
文摘Volumetric combustion has been developed to realize a high substitution ratio of biomass in co-firing boilers, which features an intensive flue gas internal recirculation inside furnace. However, the characteristics of NOx and SOx emissions in large-scale boilers with volumetric combustion were not fully clear. In this paper, an Aspen Plus model of volumetric combustion system was built up based on a co-firing boiler. In order to characterize the reductions of NOx and SOx, three biomass substitution ratios were involved, namely, 100% biomass, 45% biomass with 55% coal, and 100% coal. The effects of flue gas recirculation ratio, air preheating temperature, oxygen concentration, and fuel types on pollutants emission in the volumetric combustion system were investigated. According to the results, it was concluded the higher substitution ratio of biomass in a co-firing boiler, the lower emissions of NOx and SOx. Moreover, flue gas internal recirculation is an effective pathway for NOx reduction and an increased recirculation ratio resulted in a significant decreasing of NOx emission;however, the SOx increased slightly. The influences of air preheating temperature and O2 concentration on NOx emission were getting weak with increasing of recirculation ratio. When 10% or even higher of flue gas was recycled, it was observed that almost no NOx formed thermodynamically under all studied conditions. Finally, to reach a low emission level of NOx, less energy would be consumed during biomass combustion than coal combustion process for internal recirculation of flue gas.
文摘Solar resource monitoring and evaluation is the foundation of informatization of photovoltaic power station. In 2016, China began to bring in high-precision solar resource monitoring technology which provides reliable basic data for the photovoltaic informatization development. This paper systematically sorts out design basis, monitoring elements and system architecture of high-precision monitoring station, and analyzes operation effect of high-precision solar resource monitoring station from performance of solar radiation meter and prediction results of luminous power, which provide important data support for analysis of power generation efficiency of photovoltaic module, prediction of power generation of power station, evaluation of operation effect of power station, etc.
基金This project was supported by the National Natural Science Foundation of China (No. 60373093, No. 60533060).
文摘In this paper,we propose a method to deal with numerical integral by using two kinds of C^2 quasi-interpolation operators on the bivariate spline space,and also dis- cuss the convergence properties and error estimates.Moreover,the proposed method is applied to the numerical evaluation of 2-D singular integrals.Numerical exper- iments will be carried out and the results will be compared with some previously published results.
文摘Interleukin I receptor associated kinase 1 (IRAK1) is a downstream signal molecule of activated MyD88 recruitment, which can activate Fas associated death domain protein (FADD) to induce apoptosis. IRAK1 can also activate tumor necrosis factor-related factor 6 (TRAF6) and induce the expression of a series of downstream specific genes. IRAK1 is an essential factor in the induction of mitochondrial division and necroptosis. In the current study, RNAi technique was used to silence IRAK1, and the apoptosis and necroptosis rate of SK-Hep1 cells were detected by flow cytometry. The apoptosis and the necroptosis pathway of hepatoma SK-Hep1 cells were blocked separately, and the expressions of FADD, RIP1 and TRAF6 genes were silenced separately. The results showed when the expression of IRAK1 was down-regulated, the apoptosis and necroptosis rate of SK-Hep1 cells were significantly increased. With silenced FADD, RIP1 and TRAF6, respectively, the expression of IRAK1 protein had no significant change. However, the expression of IRAK1 mRNA decreased significantly (p < 0.01) after the silencing of RIP1 and TRAF6 genes, while the IRAK1 mRNA did not change significantly after the silencing of FADD genes;when z-VAD-FMK was interfered, the expression of IRAK1 mRNA decreased significantly after the silencing of TRAF6 genes, while the IRAK1 mRNA did not change significantly after the silencing of FADD and RIP1genes. The study shows that RAK1 gene inhibits apoptosis and necroptosis in SK-Hep1 cells. TRAF6 gene affected the role of IRAK1 in apoptosis and necroptosis, RIP1 gene affected the role of IRAK1 in apoptosis, while FADD gene did not affect the role of IRAK1 in apoptosis and necroptosis.
基金the Nanjing University of Finance and Economics 2020 Ideological and Political Demonstration Class Project“Industrial Economics”(Project Number:CQF2020001).
文摘The“Internet Plus”business model calls for the optimization of business education in higher education institutes.The fast pace of“Internet Plus”requires business students to have abundant interdisciplinary knowledge,comprehensive modern business skills,habits of lifelong self-learning,and the courage to innovate.This paper proposes that higher education institutes should improve their business education programs in the following ways:firstly,form teaching alliances to provide interdisciplinary learning opportunities for business students;secondly,establish a social practice tutor team from excellent alumni;thirdly,build an online education platform for alumni to develop lifelong autonomous learning habits;finally,explore the three-tutor training model for business students.
文摘With the wide spread of the epidemic,the long-term closed lifestyle and the sharp reduction of physical activities,many people have mental health problems such as panic,anxiety and depression.At present,there are few studies on the effect of exercise on depression.Therefore,the study selected exercise intervention therapy and other intervention methods to evaluate the intervention effect of depression,and explored the effect of exercise intervention by evaluating depression scale and effective indicators.Hope this can provide a new idea for exercise intervention as an adjunctive therapy for depression on drug treatment.
基金supported by the National Key Research and Development Program of China(2022YFC2010004)Jiangsu Province Key Project of Comprehensive Prevention and Control of Chronic Diseases(BE2020699)Top Talent Support Program for young and middle-aged people of Wuxi Health Committee(BJ2023044).
文摘Currently,clinically available coronary CT angiography(CCTA)derived fractional flow reserve(CT-FFR)is time-consuming and complex.We propose a novel artificial intelligence-based fully-automated,on-site CT-FFR technology,which combines the automated coronary plaque segmentation and luminal extraction model with reduced order 3 dimentional(3D)computational fluid dynamics.A total of 463 consecutive patients with 600 vessels from the updated China CT-FFR study in Cohort 1 undergoing both CCTA and invasive fractional flow reserve(FFR)within 90 d were collected for diagnostic performance evaluation.For Cohort 2,a total of 901 chronic coronary syndromes patients with index CT-FFR and clinical outcomes at 3-year follow-up were retrospectively analyzed.In Cohort 3,the association between index CT-FFR from triple-rule-out CTA and major adverse cardiac events in patients with acute chest pain from the emergency department was further evaluated.The diagnostic accuracy of this CT-FFR in Cohort 1 was 0.82 with an area under the curve of 0.82 on a per-patient level.Compared with the manually dependent CT-FFR techniques,the operation time of this technique was substantially shortened by 3 times and the number of clicks from about 60 to 1.This CT-FFR technique has a highly successful(>99%)calculation rate and also provides superior prediction value for major adverse cardiac events than CCTA alone both in patients with chronic coronary syndromes and acute chest pain.Thus,the novel artificial intelligencebased fully automated,on-site CT-FFR technique can function as an objective and convenient tool for coronary stenosis functional evaluation in the real-world clinical setting.
基金supported by the Science Key Project of Bengbu Medical College(No.2022byzd068)the University Synergy Innovation Program of Anhui Province(No.GXXT-2022-058)The Anhui Provincial University Natural Science Key Project(No.2022AH051458)provided us with language polishing.
文摘Background:During the COVID-19 pandemic,clinical trial recruitment could not be carried out due to travel restrictions,transmission risks and other factors,resulting in the stagnation of many ongoing or upcoming clinical trials.Objective:An intelligent screening tool was developed using artificial intelligence technology to rapidly prescreen potential patients for phase I solid tumor drug clinical trials.Methods:A total of 429 screening process records were collected from 27 phase I solid tumor drug clinical trials at the First Affiliated Hospital of Bengbu Medical College from April 2018 to May 2021.Features of the experimental data were analyzed,and the collinearity(principal component analysis)and strong correlation(χ^(2)test)among features were eliminated.XGBoost,random forest,and naive Bayes were used to determine the weight importance of the features.Finally,prescreening models were constructed using a classification machine learning algorithm,and the optimal model was selected.Results:Among the 429 screening records,33 were generated by repeated subject participation in different clinical trials,and of the remaining 396 screening records,246(62.12%)were screened successfully.The gold standard for subject screening success was the final judgment made by the principal investigator(PI)based on the clinical trial protocol.A Venn diagram was used to identify the important feature intersections of the machine learning algorithms.After intersecting the top 15 characteristic variables of the different feature screening models,9 common variables were obtained:age,sex,distance from residence to the central institution,tumor histology,tumor stage,tumorectomy,interval from diagnosis/postoperative to screening,chemotherapy,and Eastern Cooperative Oncology Group(ECOG)score.To select the optimal subset,the 9 important feature variables were expanded to 12 and 15 feature subsets,and the performance of different feature subsets under different machine learning models was validated.The results showed that optimal performance,accuracy and practicability were achieved using XGBoost with the 12-feature subset.The final model could accurately predict the screening success rates in both internal(AUC=0.895)and external(AUC=0.796)validation and has been transformed into a convenient tool to facilitate its application in clinical settings.Subjects with a probability exceeding or equal to the threshold in the final model had a greater probability of being successfully screened.Conclusion:Based on the optimal model,we created an online prediction calculator and visualization app,the Intelligent Screening Service Platform(ISSP),which can rapidly screen patients for phase I solid tumor drug clinical trials.The IsSP can effectively solve the problems of space and time intervals.On the mobile terminal,matching between clinical trial projects and patients can be achieved,and the rapid screening of clinical trial subjects can be completed to obtain more clinical trial subjects.As an auxiliary tool,the ISSP optimizes the screening process of clinical trials and provides more convenient services for clinical investigators and patients.
基金supported by the National Key R&D Program of China (No.2019YFA0904303)the National Natural Science Foundation of China (Grant No.62072206).
文摘1 Introduction Retrosynthesis aims to predict a set of reactants for producing given molecules[1],which plays a significant part in the biochemistry field,such as molecular pathway design and drug discovery.Although existing methods perform better in solving this problem,most of these methods[2,3]only describe the molecules from one kind of perspective,such as they use Simplified Molecular Input Line Entry System(SMILES)strings[4]to represent the atomic components and the relationship between atoms of molecules or leverage Extended Connectivity Fingerprints(ECFPs)represent the information of the molecular sub-structure composition via binary vectors[5].