Optical control of exotic properties in strongly correlated electron materials is very attractive owing to their potential applications in optical and electronic devices.Herein,we demonstrate a vertical heterojunction...Optical control of exotic properties in strongly correlated electron materials is very attractive owing to their potential applications in optical and electronic devices.Herein,we demonstrate a vertical heterojunction made of a correlated electron oxide thin film VO_(2) and a conductive 0.05 wt% Nb-doped TiO_(2) single crystal,whose metal-insulator transition(MIT)across the nanoscale heterointerface can be efficiently modulated by visible light irradiation.The magnitude of the MIT decreases from ~350 in the dark state to ~7 in the illuminated state,obeying a power law with respect to the light power density.The junction resistance is switched in a reversible and synchronous manner by turning light on and off.The optical tunability of it is also exponentially proportional to the light power density,and a 320-fold on/off ratio is achieved with an irradiance of 65.6 mW cm^(-2) below the MIT temperature.While the VO_(2) thin film is metallic above the MIT temperature,the optical tunability is remarkably weakened,with a one-fold change remaining under light illumination.These results are co-attributed to a net reduction(~15 meV)in the apparent barrier height and the photocarrier-injection-induced metallization of the VO_(2) heterointerface through a photovoltaic effect,which is induced by deep defect level transition upon the visible light irradiance at low temperature.Additionally,the optical tunability is minimal,resulting from the quite weak modulation of the already metallic band structure in the Schottky-type junction above the MIT temperature.This work enables a remotely optical scheme to manipulate the MIT,implying potential uncooled photodetection and photoswitch applications.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(108-4115100092)the National Key Research and Development Program of China(2016YFA0300102 and 2017YFA0205004)+2 种基金the National Natural Science Foundation of China(11775224,11504358,11804324 and 52072102)the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(2018CXFX001)the Natural Science Research Projects for the Colleges and Universities of Anhui Province(KJ2018A0660)。
文摘Optical control of exotic properties in strongly correlated electron materials is very attractive owing to their potential applications in optical and electronic devices.Herein,we demonstrate a vertical heterojunction made of a correlated electron oxide thin film VO_(2) and a conductive 0.05 wt% Nb-doped TiO_(2) single crystal,whose metal-insulator transition(MIT)across the nanoscale heterointerface can be efficiently modulated by visible light irradiation.The magnitude of the MIT decreases from ~350 in the dark state to ~7 in the illuminated state,obeying a power law with respect to the light power density.The junction resistance is switched in a reversible and synchronous manner by turning light on and off.The optical tunability of it is also exponentially proportional to the light power density,and a 320-fold on/off ratio is achieved with an irradiance of 65.6 mW cm^(-2) below the MIT temperature.While the VO_(2) thin film is metallic above the MIT temperature,the optical tunability is remarkably weakened,with a one-fold change remaining under light illumination.These results are co-attributed to a net reduction(~15 meV)in the apparent barrier height and the photocarrier-injection-induced metallization of the VO_(2) heterointerface through a photovoltaic effect,which is induced by deep defect level transition upon the visible light irradiance at low temperature.Additionally,the optical tunability is minimal,resulting from the quite weak modulation of the already metallic band structure in the Schottky-type junction above the MIT temperature.This work enables a remotely optical scheme to manipulate the MIT,implying potential uncooled photodetection and photoswitch applications.