Great attention has been given to high-performance and inexpensive lithiumion batteries(LIBs)in response to the ever-increasing demand for the explosive growth of electric vehicles(EVs).High-performance and low-cost C...Great attention has been given to high-performance and inexpensive lithiumion batteries(LIBs)in response to the ever-increasing demand for the explosive growth of electric vehicles(EVs).High-performance and low-cost Co-freeNi-rich layered cathodes are considered one of the most favorable candidates for nextgeneration LIBs because the current supply chain of EVs relies heavily on scarce and expensive Co.Herein,we review the recent research progress on Co-free Nirich layered cathodes,emphasizing on analyzing the necessity of replacing Co and the popular improvment methods.The current advancements in the design strategies of Co-free Ni-rich layered cathodes are summarized in detail.Despite considerable improvements achieved so far,the main technical challenges contributing to the deterioration of Co-free Ni-rich cathodes such as detrimental phase transitions,crack formation,and severe interfacial side reactions,are difficult to resolve by a single technique.The cooperation of multiple modification strategies is expected to accelerate the industrialization of Co-free Ni-rich layered cathodes,and the corresponding synergistic mechanisms urgently need to be studied.More effects will be aroused to explore high-performance Co-free Ni-rich layered cathodes to promote the sustainable development of LIBs.展开更多
Jasmonates(JAs)are plant hormones with crucial roles in development and stress resilience.They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins.In the absence of JA...Jasmonates(JAs)are plant hormones with crucial roles in development and stress resilience.They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins.In the absence of JA,JAZ proteins bind and inhibit MYC through the assembly of MYC–JAZ–Novel Interactor of JAZ(NINJA)–TPL repressor complexes.However,JAZ and NINJA are predicted to be largely intrinsically unstructured,which has precluded their experimental structure determination.Through a combination of biochemical,mutational,and biophysical analyses and AlphaFold-derived ColabFold modeling,we characterized JAZ–JAZ and JAZ–NINJA interactions and generated models with detailed,high-confidence domain interfaces.We demonstrate that JAZ,NINJA,and MYC interface domains are dynamic in isolation and become stabilized in a stepwise order upon complex assembly.By contrast,most JAZ and NINJA regions outside of the interfaces remain highly dynamic and cannot be modeled in a single conformation.Our data indicate that the small JAZ Zinc finger expressed in Inflorescence Meristem(ZIM)motif mediates JAZ–JAZ and JAZ–NINJA interactions through separate surfaces,and our data further suggest that NINJA modulates JAZ dimerization.This study advances our understanding of JA signaling by providing insights into the dynamics,interactions,and structure of the JAZ–NINJA core of the JA repressor complex.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:51108455,52106264Civil Aviation Safety Capacity Building Fund,Grant/Award Number:ADSA2022026+1 种基金LiaoNing Revitalization Talents Program,Grant/Award Number:XLYC2008013Liaoning Province Applied Foundation Research Program Project,Grant/Award Number:2023JH2/101300215。
文摘Great attention has been given to high-performance and inexpensive lithiumion batteries(LIBs)in response to the ever-increasing demand for the explosive growth of electric vehicles(EVs).High-performance and low-cost Co-freeNi-rich layered cathodes are considered one of the most favorable candidates for nextgeneration LIBs because the current supply chain of EVs relies heavily on scarce and expensive Co.Herein,we review the recent research progress on Co-free Nirich layered cathodes,emphasizing on analyzing the necessity of replacing Co and the popular improvment methods.The current advancements in the design strategies of Co-free Ni-rich layered cathodes are summarized in detail.Despite considerable improvements achieved so far,the main technical challenges contributing to the deterioration of Co-free Ni-rich cathodes such as detrimental phase transitions,crack formation,and severe interfacial side reactions,are difficult to resolve by a single technique.The cooperation of multiple modification strategies is expected to accelerate the industrialization of Co-free Ni-rich layered cathodes,and the corresponding synergistic mechanisms urgently need to be studied.More effects will be aroused to explore high-performance Co-free Ni-rich layered cathodes to promote the sustainable development of LIBs.
基金supported by the Van Andel Institute(to K.M.)the National Science Foundation(NSF+6 种基金MCB-1922846 to K.M.)the Six Talent Peaks Project in Jiangsu Province(NY-035 to F.Z.)the Fok Ying Tong Education Foundation(161022 to F.Z.)the National Institutes of Health(grant R01 GM57795 to G.A.H.)the Chemical Sciences,Geosciences,and Biosciences Division,Basic Energy Sciences,Office of Science at the U.S.Department of Energy(grant DE–FG02–91ER20021 to G.A.H.for infrastructure support)the Michigan State University Plant Resilience Institute(for support of L.V.-C.)the Michigan AgBioResearch Project(grant MICL02278 to G.A.H.).
文摘Jasmonates(JAs)are plant hormones with crucial roles in development and stress resilience.They activate MYC transcription factors by mediating the proteolysis of MYC inhibitors called JAZ proteins.In the absence of JA,JAZ proteins bind and inhibit MYC through the assembly of MYC–JAZ–Novel Interactor of JAZ(NINJA)–TPL repressor complexes.However,JAZ and NINJA are predicted to be largely intrinsically unstructured,which has precluded their experimental structure determination.Through a combination of biochemical,mutational,and biophysical analyses and AlphaFold-derived ColabFold modeling,we characterized JAZ–JAZ and JAZ–NINJA interactions and generated models with detailed,high-confidence domain interfaces.We demonstrate that JAZ,NINJA,and MYC interface domains are dynamic in isolation and become stabilized in a stepwise order upon complex assembly.By contrast,most JAZ and NINJA regions outside of the interfaces remain highly dynamic and cannot be modeled in a single conformation.Our data indicate that the small JAZ Zinc finger expressed in Inflorescence Meristem(ZIM)motif mediates JAZ–JAZ and JAZ–NINJA interactions through separate surfaces,and our data further suggest that NINJA modulates JAZ dimerization.This study advances our understanding of JA signaling by providing insights into the dynamics,interactions,and structure of the JAZ–NINJA core of the JA repressor complex.