Normalized interventions were implemented in different cities in China to contain the outbreak of COVID-19 before December 2022.However,the differences in the intensity and timeliness of the implementations lead to di...Normalized interventions were implemented in different cities in China to contain the outbreak of COVID-19 before December 2022.However,the differences in the intensity and timeliness of the implementations lead to differences in final size of the infections.Taking the outbreak of COVID-19 in three representative cities Xi'an,Zhengzhou and Yuzhou in January 2022,as examples,we develop a compartmental model to describe the spread of novel coronavirus and implementation of interventions to assess concretely the effectiveness of Chinese interventions and explore their impact on epidemic patterns.After applying reported human confirmed cases to verify the rationality of the model,we apply the model to speculate transmission trend and length of concealed period at the initial spread phase of the epidemic(they are estimated as 10.5,7.8,8.2 days,respectively),to estimate the range of basic reproduction number(2.9,0.7,1.6),and to define two indexes(transmission rate vt and controlled rate vc)to evaluate the overall effect of the interventions.It is shown that for Zhengzhou,vc is always more than v t with regular interventions,and Xi'an take 8 days to achieve vc>v t twice as long as Yuzhou,which can interpret the fact that the epidemic situation in Xi'an was more severe.By carrying out parameter values,it is concluded that in the early stage,strengthening the precision of close contact tracking and frequency of large-scale nucleic acid testing of non-quarantined population are the most effective on controlling the outbreaks and reducing final size.And,if the close contact tracking strategy is sufficiently implemented,at the late stage largescale nucleic acid testing of non-quarantined population is not essential.展开更多
The hydroisomerization of n-hexadecane over Pt-Pd bimetallic catalysts is an effective way to produce clean fuel oil.This work reports a useful preparation method of bimetallic bifunctional catalysts by a co-impregnat...The hydroisomerization of n-hexadecane over Pt-Pd bimetallic catalysts is an effective way to produce clean fuel oil.This work reports a useful preparation method of bimetallic bifunctional catalysts by a co-impregnation or sequential impregnation process.Furthermore,monometallic catalysts with loading either Pt or Pd are also prepared for comparison.The effects of the metal species and impregnation order on the characteristics and catalytic performance of the catalysts are investigated.The catalytic test results indicate that the maximum iso-hexadecane yield over different catalysts increases as follows:Pt/silicoaluminophosphate SAPO-41<Pd/SAPO-41<Pt^(*)-Pd/SAPO-41(prepared by sequential impregnation)<Pt-Pd/SAPO-41(prepared by co-impregnation).Owing to the synergic effects between Pt and Pd,the Pt-Pd/SAPO-41 catalyst prepared by the co-impregnation method demonstrates the effective promotion of(de)hydrogenation activity.Therefore,this catalyst exhibits the highest iso-hexadecane yield of 89.4%when the n-hexadecane conversion is 96.3%.Additionally,the Pt-Pd/SAPO-41 catalyst also presents the highest catalytic activity and best stability even after 150 h long-term tests.展开更多
In this study, liposomes were used to decorate bacterial outer membrane vesicles(OMVs), and decorated OMVs were evaluated in vitro. The OMVs of Pseudomonas aeruginosa were extracted by pressure-induced ammonium sulfat...In this study, liposomes were used to decorate bacterial outer membrane vesicles(OMVs), and decorated OMVs were evaluated in vitro. The OMVs of Pseudomonas aeruginosa were extracted by pressure-induced ammonium sulfate precipitation,and their particle size, distribution, zeta potential, protein content and stability were determined. Several types of liposomes were prepared by thin film dispersion method, and the OMVs were decorated by vortexing, sonication and extrusion, respectively. The interaction between liposome and OMV was studied with fluorescence resonance energy transfer(FRET) method. The results showed that the OMVs were spherical in shape and negatively charged. The vortexing method exerted little effect on the particle size and distribution of the decorated OMVs. The sonication process reduced the particle size and distribution of OMVs. FRET experiment indicated that the OMVs were decorated through membrane fusion. The above-mentioned results indicated that liposomes could successfully decorate OMVs, and decorated OMVs certainly widened their applications.展开更多
基金supported by Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20210009)the National Natural Science Foundation of China under Grant(11801398)+1 种基金the 1331 Engineering Project of Shanxi Province,Key Projects of Health Commission of Shanxi Province(No.2020XM18)the Key Research and Development Project in Shanxi Province(202003D31011/GZ).
文摘Normalized interventions were implemented in different cities in China to contain the outbreak of COVID-19 before December 2022.However,the differences in the intensity and timeliness of the implementations lead to differences in final size of the infections.Taking the outbreak of COVID-19 in three representative cities Xi'an,Zhengzhou and Yuzhou in January 2022,as examples,we develop a compartmental model to describe the spread of novel coronavirus and implementation of interventions to assess concretely the effectiveness of Chinese interventions and explore their impact on epidemic patterns.After applying reported human confirmed cases to verify the rationality of the model,we apply the model to speculate transmission trend and length of concealed period at the initial spread phase of the epidemic(they are estimated as 10.5,7.8,8.2 days,respectively),to estimate the range of basic reproduction number(2.9,0.7,1.6),and to define two indexes(transmission rate vt and controlled rate vc)to evaluate the overall effect of the interventions.It is shown that for Zhengzhou,vc is always more than v t with regular interventions,and Xi'an take 8 days to achieve vc>v t twice as long as Yuzhou,which can interpret the fact that the epidemic situation in Xi'an was more severe.By carrying out parameter values,it is concluded that in the early stage,strengthening the precision of close contact tracking and frequency of large-scale nucleic acid testing of non-quarantined population are the most effective on controlling the outbreaks and reducing final size.And,if the close contact tracking strategy is sufficiently implemented,at the late stage largescale nucleic acid testing of non-quarantined population is not essential.
基金the financial supports from the National Key R&D Program of China,Intergovernmental International Science and Technology Innovation Cooperation Key Project(Grant No.2018YFE0108800)the National Natural Science Foundation of China(Grant Nos.21676074 and 21706053)National Key Research and Development Project,National Ministry of Education“Silk Road 1+1”Research Cooperation Project.
文摘The hydroisomerization of n-hexadecane over Pt-Pd bimetallic catalysts is an effective way to produce clean fuel oil.This work reports a useful preparation method of bimetallic bifunctional catalysts by a co-impregnation or sequential impregnation process.Furthermore,monometallic catalysts with loading either Pt or Pd are also prepared for comparison.The effects of the metal species and impregnation order on the characteristics and catalytic performance of the catalysts are investigated.The catalytic test results indicate that the maximum iso-hexadecane yield over different catalysts increases as follows:Pt/silicoaluminophosphate SAPO-41<Pd/SAPO-41<Pt^(*)-Pd/SAPO-41(prepared by sequential impregnation)<Pt-Pd/SAPO-41(prepared by co-impregnation).Owing to the synergic effects between Pt and Pd,the Pt-Pd/SAPO-41 catalyst prepared by the co-impregnation method demonstrates the effective promotion of(de)hydrogenation activity.Therefore,this catalyst exhibits the highest iso-hexadecane yield of 89.4%when the n-hexadecane conversion is 96.3%.Additionally,the Pt-Pd/SAPO-41 catalyst also presents the highest catalytic activity and best stability even after 150 h long-term tests.
基金National Natural Science Foundation of China(Grant No.81573381)CAMS Initiative for Innovative Medicine(Grant No.CAMS-I2M-1-012)
文摘In this study, liposomes were used to decorate bacterial outer membrane vesicles(OMVs), and decorated OMVs were evaluated in vitro. The OMVs of Pseudomonas aeruginosa were extracted by pressure-induced ammonium sulfate precipitation,and their particle size, distribution, zeta potential, protein content and stability were determined. Several types of liposomes were prepared by thin film dispersion method, and the OMVs were decorated by vortexing, sonication and extrusion, respectively. The interaction between liposome and OMV was studied with fluorescence resonance energy transfer(FRET) method. The results showed that the OMVs were spherical in shape and negatively charged. The vortexing method exerted little effect on the particle size and distribution of the decorated OMVs. The sonication process reduced the particle size and distribution of OMVs. FRET experiment indicated that the OMVs were decorated through membrane fusion. The above-mentioned results indicated that liposomes could successfully decorate OMVs, and decorated OMVs certainly widened their applications.