Let H be a finite dimensional Hopf C^(*)-algebra,and let K be a Hopf^(*)-subalgebra of H.Considering that the field algebra■K of a non-equilibrium Hopf spin model carries a D(H,K)-invariant subalgebra ■K,this paper ...Let H be a finite dimensional Hopf C^(*)-algebra,and let K be a Hopf^(*)-subalgebra of H.Considering that the field algebra■K of a non-equilibrium Hopf spin model carries a D(H,K)-invariant subalgebra ■K,this paper shows that the C^(*)-basic construction for the inclusion ■K×■K can be expressed as the crossed product C^(*)-algebra■KD(H,K).Here,D(H,K)is a bicrossed product of the opposite dual H^(op) and K.Furthermore,the natural action of D(H,K)on D(H,K)gives rise to the iterated crossed product■KD(H,K)×D(H,K),which coincides with the C^(*)-basic construction for the inclusion■K×■KD(H,K).In the end,the Jones type tower of field algebra■Kis obtained,and the new field algebra emerges exactly as the iterated crossed product.展开更多
The geographical condition of Qingdao, China is relatively special;the transport of various inland pollutants, the emissions of marine aerosol and local pollutants will have an impact on the changes of atmospheric aer...The geographical condition of Qingdao, China is relatively special;the transport of various inland pollutants, the emissions of marine aerosol and local pollutants will have an impact on the changes of atmospheric aerosol concentration. By using the stability classification method, trajectory clustering analysis and the NOAA HYSPLIT model, the seasonal distribution characteristics of atmospheric inhalable particulate matter concentration in Qingdao, China and its relationship with meteorological conditions, mixed layer height, and the seasonal characteristics of Qingdao pollutant transport were analyzed. The results show that the variation trends of PM2.5 and PM10 were about the same, and there are obvious seasonal differences, which are high in winter and spring, and low in summer and autumn. The concentration of inhalable particulate matter has a negative correlation with temperature, wind speed and relative humidity. The concentration of inhalable particulate matter is distinct in different relative humidity ranges. When the wind speed is less than 3 - 4 m/s, there are more inhalable particles, while the mass concentration shows obvious reduction with the wind speed more than 4 m/s. There is a significant negative correlation between the mass concentration of pollutants and the daily maximum mixed layer height. The larger the concentration of pollutants, the smaller the thickness of the daily largest mixed layer. Conversely, the smaller the mass concentration of pollutants, the larger the thickness of the daily largest mixed layer. The pollutant transport in Qingdao has obvious seasonal characteristics. The air mass in spring, autumn and winter is mainly medium-long distance transport from Mongolia and southern Russia, and medium-short distance transport from Inner Mongolia and northeast of China. The source of air masses in summer is mainly transported from the eastern and sea areas.展开更多
Denote a finite dimensional Hopf C*-algebra by H, and a Hopf *-subalgebra of H by H1. In this paper, we study the construction of the field algebra in Hopf spin models determined by H1 together with its symmetry. More...Denote a finite dimensional Hopf C*-algebra by H, and a Hopf *-subalgebra of H by H1. In this paper, we study the construction of the field algebra in Hopf spin models determined by H1 together with its symmetry. More precisely, we consider the quantum double D(H, H_(1)) as the bicrossed product of the opposite dual Hopˆ of H and H1 with respect to the coadjoint representation, the latter acting on the former and vice versa, and under the non-trivial commutation relations between H1 and Ĥ we define the observable algebra AH1. Then using a comodule action of D(H, H1) on AH1, we obtain the field algebra FH1, which is the crossed product AH1⋊D(H,H_(1)), and show that the observable algebra AH1 is exactly a D(H, H1)-invariant subalgebra of FH1. Furthermore, we prove that there exists a duality between D(H, H1) and AH1, implemented by a*-homomorphism of D(H, H_(1)).展开更多
The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3...The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.展开更多
Locator/identifier separation paradigm(LISP)is an emerging Internet architecture evolution trend that decouples the identifier and location of an entity attached to the Internet.Due to its flexibility,LISP has seen it...Locator/identifier separation paradigm(LISP)is an emerging Internet architecture evolution trend that decouples the identifier and location of an entity attached to the Internet.Due to its flexibility,LISP has seen its application in various fields such as mobile edge computing,and V2X networks.However,LISP relies on a DNS-like mapping system to associate identifiers and locations before connection establishment.Such a procedure incurs an extra latency overhead and thus hinders the adoption of LISP in delay-sensitive use cases.In this paper,we propose a novel RNN-based mapping prediction scheme to boost the performance of the LISP mapping resolution,by modeling the mapping procedure as a time series prediction problem.The key idea is to predict the mapping data regarding services to be utilized by users in edge networks administered by xTRs and proactively cache the mapping information within xTRs in advance.We compare our approach with several baseline methods,and the experiment results show a 30.02%performance gain in LISP cache hit ratio and 55.6%delay reduction compared with the case without mapping prediction scheme.This work preliminarily proves the potential of the approach in promoting lowlatency LISP-based use cases.展开更多
文摘Let H be a finite dimensional Hopf C^(*)-algebra,and let K be a Hopf^(*)-subalgebra of H.Considering that the field algebra■K of a non-equilibrium Hopf spin model carries a D(H,K)-invariant subalgebra ■K,this paper shows that the C^(*)-basic construction for the inclusion ■K×■K can be expressed as the crossed product C^(*)-algebra■KD(H,K).Here,D(H,K)is a bicrossed product of the opposite dual H^(op) and K.Furthermore,the natural action of D(H,K)on D(H,K)gives rise to the iterated crossed product■KD(H,K)×D(H,K),which coincides with the C^(*)-basic construction for the inclusion■K×■KD(H,K).In the end,the Jones type tower of field algebra■Kis obtained,and the new field algebra emerges exactly as the iterated crossed product.
文摘The geographical condition of Qingdao, China is relatively special;the transport of various inland pollutants, the emissions of marine aerosol and local pollutants will have an impact on the changes of atmospheric aerosol concentration. By using the stability classification method, trajectory clustering analysis and the NOAA HYSPLIT model, the seasonal distribution characteristics of atmospheric inhalable particulate matter concentration in Qingdao, China and its relationship with meteorological conditions, mixed layer height, and the seasonal characteristics of Qingdao pollutant transport were analyzed. The results show that the variation trends of PM2.5 and PM10 were about the same, and there are obvious seasonal differences, which are high in winter and spring, and low in summer and autumn. The concentration of inhalable particulate matter has a negative correlation with temperature, wind speed and relative humidity. The concentration of inhalable particulate matter is distinct in different relative humidity ranges. When the wind speed is less than 3 - 4 m/s, there are more inhalable particles, while the mass concentration shows obvious reduction with the wind speed more than 4 m/s. There is a significant negative correlation between the mass concentration of pollutants and the daily maximum mixed layer height. The larger the concentration of pollutants, the smaller the thickness of the daily largest mixed layer. Conversely, the smaller the mass concentration of pollutants, the larger the thickness of the daily largest mixed layer. The pollutant transport in Qingdao has obvious seasonal characteristics. The air mass in spring, autumn and winter is mainly medium-long distance transport from Mongolia and southern Russia, and medium-short distance transport from Inner Mongolia and northeast of China. The source of air masses in summer is mainly transported from the eastern and sea areas.
基金supported by National Nature Science Foundation of China(11871303,11701423)Nature Science Foundation of Hebei Province(A2019404009)。
文摘Denote a finite dimensional Hopf C*-algebra by H, and a Hopf *-subalgebra of H by H1. In this paper, we study the construction of the field algebra in Hopf spin models determined by H1 together with its symmetry. More precisely, we consider the quantum double D(H, H_(1)) as the bicrossed product of the opposite dual Hopˆ of H and H1 with respect to the coadjoint representation, the latter acting on the former and vice versa, and under the non-trivial commutation relations between H1 and Ĥ we define the observable algebra AH1. Then using a comodule action of D(H, H1) on AH1, we obtain the field algebra FH1, which is the crossed product AH1⋊D(H,H_(1)), and show that the observable algebra AH1 is exactly a D(H, H1)-invariant subalgebra of FH1. Furthermore, we prove that there exists a duality between D(H, H1) and AH1, implemented by a*-homomorphism of D(H, H_(1)).
基金support from diverse funding sources,including the National Key Program for S&T Research and Development of the Ministry of Science and Technology(MOST),Yifang Wang's Science Studio of the Ten Thousand Talents Project,the CAS Key Foreign Cooperation Grant,the National Natural Science Foundation of China(NSFC)Beijing Municipal Science&Technology Commission,the CAS Focused Science Grant,the IHEP Innovation Grant,the CAS Lead Special Training Programthe CAS Center for Excellence in Particle Physics,the CAS International Partnership Program,and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.
基金supported in part by the National Key Research and Development Program of China(2021YFB3101304)in part by the Natural Science Basic Research Program of Shaanxi(2022JQ-621,2022JQ-658,2021JQ-207)+2 种基金in part by the National Natural Science Foundation of China(62002278)in part by the Fundamental Research Funds for the Central Universities of Ministry of Education of China(XJS211507,XJS211508)in part by the Fundamental Research Funds for the Central Universities(ZYTS23165).
文摘Locator/identifier separation paradigm(LISP)is an emerging Internet architecture evolution trend that decouples the identifier and location of an entity attached to the Internet.Due to its flexibility,LISP has seen its application in various fields such as mobile edge computing,and V2X networks.However,LISP relies on a DNS-like mapping system to associate identifiers and locations before connection establishment.Such a procedure incurs an extra latency overhead and thus hinders the adoption of LISP in delay-sensitive use cases.In this paper,we propose a novel RNN-based mapping prediction scheme to boost the performance of the LISP mapping resolution,by modeling the mapping procedure as a time series prediction problem.The key idea is to predict the mapping data regarding services to be utilized by users in edge networks administered by xTRs and proactively cache the mapping information within xTRs in advance.We compare our approach with several baseline methods,and the experiment results show a 30.02%performance gain in LISP cache hit ratio and 55.6%delay reduction compared with the case without mapping prediction scheme.This work preliminarily proves the potential of the approach in promoting lowlatency LISP-based use cases.