In this paper,10-day spatio-temporal response of vegetation to the change of temperature and precipitation in spring,summer,autumn and whole year during the period of 1998―2009 was analyzed based on the data of SPOT ...In this paper,10-day spatio-temporal response of vegetation to the change of temperature and precipitation in spring,summer,autumn and whole year during the period of 1998―2009 was analyzed based on the data of SPOT VEGETATION-NDVI and 10-day average temperature or precipitation from 54 meteorological stations in Xinjiang.The results show that the response of 10-day NDVI to temperature was more significant than that to precipitation,and the maximal response of vegetation to temperature and precipitation lagged for two 10-day periods.Seasonally,the effect of temperature and precipitation on vegetation NDVI was most marked in autumn,then in spring,and it was not significant in summer.The response of vegetation to 10-day change of meteorological factors was positive with a long affecting duration in spring,and it had a relatively short affecting duration in autumn and summer.Spatially,the 10-day maximal response of NDVI to temperature in northern Xinjiang was higher than that in southern Xinjiang.The correlation between the 10-day NDVI in whole year and the temperature in the 0-8th 10-day period was significantly higher than that between the annual NDVI and the annual temperature at all meteorological stations;the interannual change of NDVI was accordant well with the change of annual precipitation.However,the effect of precipitation within a year on NDVI was not strong.The results indicated that interannual change of temperature was not the dominant factor affecting the change of vegetation NDVI in Xinjiang,but the decrease of annual precipitation was the main factor resulting in the fluctuation of vegetation coverage.Ten-day average temperature was an important factor to promote vegetation growth in Xinjiang within a year,but the effect of precipitation on vegetation growth within a year was not strong.展开更多
This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC dat...This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). Based on simulations using well calibrated and validated Carbon Exchanges in the Vegetation-Soil-Atmosphere (CEVSA) model, tem- poral and spatial variations in carbon storage and fluxes in China may be generated empower us to relate these variations to climate variability and LULC with respect to net primary productivity (NPP), heterotrophic respiration (HR), net ecosystem productivity (NEP), storage and soil carbon (SOC), and vegetation carbon (VEGC) individually or collectively. Overall, the increases in NPP were greater than HR in most cases due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in a net increase of total amount of carbon being stored by about 0.296 PgC within a 20-year time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 PgC within the 20-year time period. Such findings will contribute to the generation of carbon emissions control policies under global climate change impacts.展开更多
The chemical reduction of carbon dioxide(CO2) has always drawn intensive attentions as it can not only remove CO2 which is the primary greenhouse gas but also produce useful fuels. Industrial synthesis of methanol uti...The chemical reduction of carbon dioxide(CO2) has always drawn intensive attentions as it can not only remove CO2 which is the primary greenhouse gas but also produce useful fuels. Industrial synthesis of methanol utilizing copper-based catalysts is a commonly used process for CO2 hydrogenation. Despite extensive efforts on improving its reaction mechanism by identifying the active sites and optimizing the operating temperature and pressure, it is still remains completely unveiled. The selectivities of CO2 electroreduction at copper electrode could mainly be towards carbon monoxide(CO), formic acid(HCOOH), methane(CH4) or ethylene(C2H4), which depends on the chemical potentials of hydrogen controlled by the applied potential. Interestingly, methanol could hardly be produced electrochemically despite utilizing metallic copper as catalysts in both processes. Moreover, the mechanistic researches have also been performed aiming to achieve the higher selectivity towards more desirable higher hydrocarbons. In this work, we review the present proposals of reaction mechanisms of copper catalyzing CO2 reduction in industrial methanol synthesis and electrochemical environment in terms of density functional theory(DFT) calculations, respectively. In addition, the influences of the simulation methods of solvation and electrochemical model at liquid-solid interface on the selectivity are discussed and compared.展开更多
The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an impor...The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an important role in this process,but it still remains elusive.To systematically understand its influence,here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211)surface between in the absence and presence of water based on microkinetic simulations upon density functional theory(DFT)calculations.The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed.It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH,promoting the reverse water gas shift reaction to produce carbon monoxide(CO).It hardly influences the CO2 hydrogenation to methanol kinetically.In addition,the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.展开更多
Background:Pelvic lymph node dissection(PLND)in radical cystectomy(RC)is of great significance,but the method and scope of PLND remain controversial.Based on the principle of indirect lymphadenography,we designed a me...Background:Pelvic lymph node dissection(PLND)in radical cystectomy(RC)is of great significance,but the method and scope of PLND remain controversial.Based on the principle of indirect lymphadenography,we designed a method to localize the whole pelvic lymph nodes by intradermal injection of indocyanine green(ICG)through the lower limbs and perineum,and to evaluate the effectiveness of this method. Methods:In a single center,54 bladder cancer patients who underwent RC and PLND participated in a prospective clinical trial,which began on February 28,2022 and ended on December 30,2022.ICG solution was injected subcutaneously at the medial malleolus of both lower extremities and at both sides of the midline of the perineum.The fluorescent laparoscopy was used to trace,locate,and remove the targeted areas under the image fusion mode.The consistency of lymph node resection was determined by histopathological diagnosis.The impact of ICG guidance on the surgical time of PLND was compared with that of 11 bladder cancer patients who underwent RC and PLND without ICG injection,serving as the control group. Results:Perineal lower limb combined injection can provide comprehensive visualization of pelvic lymph nodes.This technique reduces PLND surgical time and increases the accuracy of PLND. Conclusion:Intracutaneous injection of ICG into the lower limbs and perineum can specifically mark pelvic lymph nodes.Intraoperative fluores-cence imaging can accurately identify,locate,and resect lymph nodes in the pelvic region,reducing PLND surgical time and increasing the accuracy of PLND.展开更多
基金supported by National Natural Science Foundation of China (40730633)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-334)
文摘In this paper,10-day spatio-temporal response of vegetation to the change of temperature and precipitation in spring,summer,autumn and whole year during the period of 1998―2009 was analyzed based on the data of SPOT VEGETATION-NDVI and 10-day average temperature or precipitation from 54 meteorological stations in Xinjiang.The results show that the response of 10-day NDVI to temperature was more significant than that to precipitation,and the maximal response of vegetation to temperature and precipitation lagged for two 10-day periods.Seasonally,the effect of temperature and precipitation on vegetation NDVI was most marked in autumn,then in spring,and it was not significant in summer.The response of vegetation to 10-day change of meteorological factors was positive with a long affecting duration in spring,and it had a relatively short affecting duration in autumn and summer.Spatially,the 10-day maximal response of NDVI to temperature in northern Xinjiang was higher than that in southern Xinjiang.The correlation between the 10-day NDVI in whole year and the temperature in the 0-8th 10-day period was significantly higher than that between the annual NDVI and the annual temperature at all meteorological stations;the interannual change of NDVI was accordant well with the change of annual precipitation.However,the effect of precipitation within a year on NDVI was not strong.The results indicated that interannual change of temperature was not the dominant factor affecting the change of vegetation NDVI in Xinjiang,but the decrease of annual precipitation was the main factor resulting in the fluctuation of vegetation coverage.Ten-day average temperature was an important factor to promote vegetation growth in Xinjiang within a year,but the effect of precipitation on vegetation growth within a year was not strong.
文摘This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). Based on simulations using well calibrated and validated Carbon Exchanges in the Vegetation-Soil-Atmosphere (CEVSA) model, tem- poral and spatial variations in carbon storage and fluxes in China may be generated empower us to relate these variations to climate variability and LULC with respect to net primary productivity (NPP), heterotrophic respiration (HR), net ecosystem productivity (NEP), storage and soil carbon (SOC), and vegetation carbon (VEGC) individually or collectively. Overall, the increases in NPP were greater than HR in most cases due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in a net increase of total amount of carbon being stored by about 0.296 PgC within a 20-year time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 PgC within the 20-year time period. Such findings will contribute to the generation of carbon emissions control policies under global climate change impacts.
基金supported by the National Natural Science Foundation of China(21333003,21303051)Shanghai Natural Science Foundation(13ZR1453000)the Recruitment Program of Global Experts(B08021)
文摘The chemical reduction of carbon dioxide(CO2) has always drawn intensive attentions as it can not only remove CO2 which is the primary greenhouse gas but also produce useful fuels. Industrial synthesis of methanol utilizing copper-based catalysts is a commonly used process for CO2 hydrogenation. Despite extensive efforts on improving its reaction mechanism by identifying the active sites and optimizing the operating temperature and pressure, it is still remains completely unveiled. The selectivities of CO2 electroreduction at copper electrode could mainly be towards carbon monoxide(CO), formic acid(HCOOH), methane(CH4) or ethylene(C2H4), which depends on the chemical potentials of hydrogen controlled by the applied potential. Interestingly, methanol could hardly be produced electrochemically despite utilizing metallic copper as catalysts in both processes. Moreover, the mechanistic researches have also been performed aiming to achieve the higher selectivity towards more desirable higher hydrocarbons. In this work, we review the present proposals of reaction mechanisms of copper catalyzing CO2 reduction in industrial methanol synthesis and electrochemical environment in terms of density functional theory(DFT) calculations, respectively. In addition, the influences of the simulation methods of solvation and electrochemical model at liquid-solid interface on the selectivity are discussed and compared.
基金supported by the National Key Research and Development Program of China(2018YFA0208600)the National Natural Science Foundation of China(21673072,21333003,91845111)Program of Shanghai Subject Chief Scientist(17XD1401400)
文摘The hydrogenation of carbon dioxide(CO2)is one of important processes to effectively convert and utilize CO2,which is also regarded as the key step at the industrial methanol synthesis.Water is likely to play an important role in this process,but it still remains elusive.To systematically understand its influence,here we computationally compare the reaction mechanisms of CO2 hydrogenation over the stepped Cu(211)surface between in the absence and presence of water based on microkinetic simulations upon density functional theory(DFT)calculations.The effects of water on each hydrogenation step and the whole activity and selectivity are checked and its physical origin is discussed.It is found that the water could kinetically accelerate the hydrogenation on CO2 to COOH,promoting the reverse water gas shift reaction to produce carbon monoxide(CO).It hardly influences the CO2 hydrogenation to methanol kinetically.In addition,the too high initial partial pressure of water will thermodynamically inhibit the CO2 conversion.
文摘Background:Pelvic lymph node dissection(PLND)in radical cystectomy(RC)is of great significance,but the method and scope of PLND remain controversial.Based on the principle of indirect lymphadenography,we designed a method to localize the whole pelvic lymph nodes by intradermal injection of indocyanine green(ICG)through the lower limbs and perineum,and to evaluate the effectiveness of this method. Methods:In a single center,54 bladder cancer patients who underwent RC and PLND participated in a prospective clinical trial,which began on February 28,2022 and ended on December 30,2022.ICG solution was injected subcutaneously at the medial malleolus of both lower extremities and at both sides of the midline of the perineum.The fluorescent laparoscopy was used to trace,locate,and remove the targeted areas under the image fusion mode.The consistency of lymph node resection was determined by histopathological diagnosis.The impact of ICG guidance on the surgical time of PLND was compared with that of 11 bladder cancer patients who underwent RC and PLND without ICG injection,serving as the control group. Results:Perineal lower limb combined injection can provide comprehensive visualization of pelvic lymph nodes.This technique reduces PLND surgical time and increases the accuracy of PLND. Conclusion:Intracutaneous injection of ICG into the lower limbs and perineum can specifically mark pelvic lymph nodes.Intraoperative fluores-cence imaging can accurately identify,locate,and resect lymph nodes in the pelvic region,reducing PLND surgical time and increasing the accuracy of PLND.