The variations of strain and permeability of coal were systematically studied through the physical simulation of N2 and water injection.The effects of fluid adsorption capacity and initial permeability on strain,perme...The variations of strain and permeability of coal were systematically studied through the physical simulation of N2 and water injection.The effects of fluid adsorption capacity and initial permeability on strain,permeability and the dominant effect of pore pressure were discussed.The adsorption strain and strain rate of coal during water injection are significantly higher than those during N2 injection.An edge of free adsorption exists in the early phase of N2 and water injection,which is related to fluid saturation.Within this boundary,the strain rate and pore pressure are independent.Moreover,the injec-tion time of initial stage accounts for about 20%of the total injection time,but the strain accounts for 70%of the total strain.For water injection,this boundary is about half of water saturation of coal.Besides,the influence of pore pressure on permeability is complex,which is controlled by adsorption capacity and initial permeability of coal.When the initial permeability is large enough,the effect of adsorption strain on permeability is relatively weak,and the promoting effect of pore pressure on fluid migration is dominant.Therefore,the permeability increases with increasing pore pressure.When the initial permeability is relatively low,the pore pressure may have a dominant role in promoting fluid migration for the fluid with weak adsorption capacity.However,for the fluid with strong adsorption capacity,the adsorption strain caused by pore pressure may play a leading role,and the permeability reduces first and then ascends with increasing pore pressure.展开更多
The reaction between carbonic acid and montmorillonite minerals was studied in order to provide a theoretical basis for analyzing changes in the physical properties of coal seams after CO_(2)injection and for optimizi...The reaction between carbonic acid and montmorillonite minerals was studied in order to provide a theoretical basis for analyzing changes in the physical properties of coal seams after CO_(2)injection and for optimizing CO_(2) pumping parameters.A single montmorillonite mineral of purity[90%was selected and subjected to reactions at 25,35,and 45℃in carbonic acid solutions of varying acidity.The Si and Al concentrations in the solutions and the structure and elemental compositions of the montmorillonite before and after the reactions were analyzed using a spectrophotometer,an X-ray diffractometer,and an energy-dispersive X-ray spectrometer;kinetic reaction models were established for the dissolution of Si and Al in carbonic acid solutions in order to estimate the apparent activation energy of Si dissolution under different acidity conditions.The results indicate that Al dissolved rapidly and soon reached solubility equilibrium.On the other hand,Si concentration in the solutions increased rapidly and then gradually declined with vibrations,with maximum values at 25,35,and 45℃,which were observed at approximately 96,72,and 48 h,respectively.In addition,Si dissolution fitted the diffusion-controlled reaction model well;as the pH value decreased,the apparent activation energy of Si dissolution decreased,and Si became easier to dissolve.Furthermore,it was concluded that as a weak acid,carbonic acid causes little damage to the mineral structure of montmorillonite.展开更多
The methanol conversion over Fe-Zn-Zr catalyst was studied at 0.1 MPa and 280-360 ℃ The experimental results indicate that the main products of methanol conversion are methane and butane, and that other hydrocarbons ...The methanol conversion over Fe-Zn-Zr catalyst was studied at 0.1 MPa and 280-360 ℃ The experimental results indicate that the main products of methanol conversion are methane and butane, and that other hydrocarbons are scarcely produced. All results show that propylene is most probably the olefin formed first in methanol conversion rather than ethene over Fe-Zn-Zr catalyst. Methane is formed from methoxy group, and C4 is possibly yielded on the surface from propylene through binding with a methoxy group.展开更多
The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit mod...The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit model involves a single slit,and the carbon nanotube model does not consider the molecular structure of coal.The difference of the adsorption capacity of coal to methane was determined without considering the external environmental conditions by the molecular structure and pore morphology of coal.The study of methane adsorption by coal under single condition cannot reveal its mechanism.In view of this,elemental analysis,FTIR spectrum,XPS electron energy spectrum,13C NMR,and isothermal adsorption tests were conducted on the semi-anthracite of Changping mine and the anthracite of Sihe Mine in Shanxi Province,China.The grand canonical Monte Carlo(GCMC)and molecular dynamics simulation method was used to establish the coal molecular structure model.By comparing the results with the experimental test results,the accuracy and practicability of the molecular structure model are confirmed.Based on the adsorption potential energy theory and aggregation model,the adsorption force of methane on aromatic ring structure,pyrrole nitrogen structure,aliphatic structure,and oxygen-containing functional group was calculated.The relationship between pore morphology,methane aggregation morphology,and coal molecular structure was revealed.The results show that the adsorption force of coal molecular structure on methane is as follows:aromatic ring structure(1.96 kcal/mol)>pyridine nitrogen(1.41 kcal/mol)>pyrrorole nitrogen(1.05 kcal/mol)>aliphatic structure(0.29 kcal/mol)>oxygen-containing functional group(0.20 kcal/mol).In the long and narrow regular pores of semi-anthracite and anthracite,methane aggregates in clusters at turns and aperture changes,and the adsorption and aggregation positions are mainly determined by the aromatic ring structure,the positions of pyrrole nitrogen and pyridine nitrogen.The degree of aggregation is controlled by the interaction energy and pore morphology.The results pertaining to coal molecular structure and pore morphology on methane adsorption and aggregation location and degree are conducive to the evaluation of the adsorption mechanism of methane in coal.展开更多
基金supported by the National Natural Science Foundation of China(41872170,42072189)China Postdoctoral Science Foundation(2021M690916)+3 种基金Key Science and Technology Program of Henan Province(222102320154)State Key Laboratory Cultivation Base for Gas Geology and Gas Control(Henan Polytechnic University)(WS2020B10)Key Scientific Research Projects of Colleges and Universities in Henan Province(21A440006)Doctor foundation of Henan Polytechnic University(B2020-6,B2021-5).
文摘The variations of strain and permeability of coal were systematically studied through the physical simulation of N2 and water injection.The effects of fluid adsorption capacity and initial permeability on strain,permeability and the dominant effect of pore pressure were discussed.The adsorption strain and strain rate of coal during water injection are significantly higher than those during N2 injection.An edge of free adsorption exists in the early phase of N2 and water injection,which is related to fluid saturation.Within this boundary,the strain rate and pore pressure are independent.Moreover,the injec-tion time of initial stage accounts for about 20%of the total injection time,but the strain accounts for 70%of the total strain.For water injection,this boundary is about half of water saturation of coal.Besides,the influence of pore pressure on permeability is complex,which is controlled by adsorption capacity and initial permeability of coal.When the initial permeability is large enough,the effect of adsorption strain on permeability is relatively weak,and the promoting effect of pore pressure on fluid migration is dominant.Therefore,the permeability increases with increasing pore pressure.When the initial permeability is relatively low,the pore pressure may have a dominant role in promoting fluid migration for the fluid with weak adsorption capacity.However,for the fluid with strong adsorption capacity,the adsorption strain caused by pore pressure may play a leading role,and the permeability reduces first and then ascends with increasing pore pressure.
基金This research was supported by the National Science and Technology Special Foundation for Major Large Oil and Gas Fields and Coal Bed Methane Development(2011ZX05042-003)the Provincial Ministry of State Key Laboratory Breeding Base of Open Projects Henan Gas Geology and Gas Control Laboratory(WS2013B06).
文摘The reaction between carbonic acid and montmorillonite minerals was studied in order to provide a theoretical basis for analyzing changes in the physical properties of coal seams after CO_(2)injection and for optimizing CO_(2) pumping parameters.A single montmorillonite mineral of purity[90%was selected and subjected to reactions at 25,35,and 45℃in carbonic acid solutions of varying acidity.The Si and Al concentrations in the solutions and the structure and elemental compositions of the montmorillonite before and after the reactions were analyzed using a spectrophotometer,an X-ray diffractometer,and an energy-dispersive X-ray spectrometer;kinetic reaction models were established for the dissolution of Si and Al in carbonic acid solutions in order to estimate the apparent activation energy of Si dissolution under different acidity conditions.The results indicate that Al dissolved rapidly and soon reached solubility equilibrium.On the other hand,Si concentration in the solutions increased rapidly and then gradually declined with vibrations,with maximum values at 25,35,and 45℃,which were observed at approximately 96,72,and 48 h,respectively.In addition,Si dissolution fitted the diffusion-controlled reaction model well;as the pH value decreased,the apparent activation energy of Si dissolution decreased,and Si became easier to dissolve.Furthermore,it was concluded that as a weak acid,carbonic acid causes little damage to the mineral structure of montmorillonite.
基金Foundation item:this work was Financially supported by the National Natural Science Foundation of China(Project No.29973056).
文摘The methanol conversion over Fe-Zn-Zr catalyst was studied at 0.1 MPa and 280-360 ℃ The experimental results indicate that the main products of methanol conversion are methane and butane, and that other hydrocarbons are scarcely produced. All results show that propylene is most probably the olefin formed first in methanol conversion rather than ethene over Fe-Zn-Zr catalyst. Methane is formed from methoxy group, and C4 is possibly yielded on the surface from propylene through binding with a methoxy group.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.41872174 and 42072189)the Program for Innovative Research Team(in Science and Technology)in Universities of Henan Province,China(No.21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(No.T2020-4).
文摘The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit model involves a single slit,and the carbon nanotube model does not consider the molecular structure of coal.The difference of the adsorption capacity of coal to methane was determined without considering the external environmental conditions by the molecular structure and pore morphology of coal.The study of methane adsorption by coal under single condition cannot reveal its mechanism.In view of this,elemental analysis,FTIR spectrum,XPS electron energy spectrum,13C NMR,and isothermal adsorption tests were conducted on the semi-anthracite of Changping mine and the anthracite of Sihe Mine in Shanxi Province,China.The grand canonical Monte Carlo(GCMC)and molecular dynamics simulation method was used to establish the coal molecular structure model.By comparing the results with the experimental test results,the accuracy and practicability of the molecular structure model are confirmed.Based on the adsorption potential energy theory and aggregation model,the adsorption force of methane on aromatic ring structure,pyrrole nitrogen structure,aliphatic structure,and oxygen-containing functional group was calculated.The relationship between pore morphology,methane aggregation morphology,and coal molecular structure was revealed.The results show that the adsorption force of coal molecular structure on methane is as follows:aromatic ring structure(1.96 kcal/mol)>pyridine nitrogen(1.41 kcal/mol)>pyrrorole nitrogen(1.05 kcal/mol)>aliphatic structure(0.29 kcal/mol)>oxygen-containing functional group(0.20 kcal/mol).In the long and narrow regular pores of semi-anthracite and anthracite,methane aggregates in clusters at turns and aperture changes,and the adsorption and aggregation positions are mainly determined by the aromatic ring structure,the positions of pyrrole nitrogen and pyridine nitrogen.The degree of aggregation is controlled by the interaction energy and pore morphology.The results pertaining to coal molecular structure and pore morphology on methane adsorption and aggregation location and degree are conducive to the evaluation of the adsorption mechanism of methane in coal.