High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency...High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.展开更多
Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic eleme...Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.展开更多
Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliabil...Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliability and efficiency of data sharing need to be further enhanced.Federated learning allows the server to exchange parameters without obtaining private data from clients so that the privacy is protected.Broad learning system is a novel artificial intelligence technology that can improve training efficiency of data set.Thus,we propose a federated bidirectional connection broad learning scheme(FeBBLS)to solve the data sharing issues.Firstly,we adopt the bidirectional connection broad learning system(BiBLS)model to train data set in vehicular nodes.The server aggregates the collected parameters of BiBLS from vehicular nodes through the federated broad learning system(FedBLS)algorithm.Moreover,we propose a clustering FedBLS algorithm to offload the data sharing into clusters for improving the aggregation capability of the model.Some simulation results show our scheme can improve the efficiency and prediction accuracy of data sharing and protect the privacy of data sharing.展开更多
Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter m...Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus.展开更多
Wind power has been developing rapidly in major countries in the past 10 years.The distinct static and dynamic characteristics of output power compared with conventional generations pose significant challenges on powe...Wind power has been developing rapidly in major countries in the past 10 years.The distinct static and dynamic characteristics of output power compared with conventional generations pose significant challenges on power system adequacy and stability and constraints on the penetration level of wind power in power systems.Based on the uniqueness of wind power versus conventional generations,we discuss its implications on power system adequacy and stability and propose basic solutions for facilitating largescale integrations of wind power into the power system.展开更多
This paper presents an improved virtual synchronous control(VSynC) for the grid-connected voltage source converter(VSC) so as to continuously operate under the grid voltage with steady unbalance.The improved VSynC int...This paper presents an improved virtual synchronous control(VSynC) for the grid-connected voltage source converter(VSC) so as to continuously operate under the grid voltage with steady unbalance.The improved VSynC introduces the negative sequence power controls on basis of conventional VSynC.The improved VSynC is capable of regulating the negative sequence internal voltage to reduce the negative-sequence injected currents and oscillated powers of the VSC aroused by the negative-sequence grid voltage.Three alternative local control objectives for the VSC itself under steady state unbalanced grid conditions and their corresponding power references are deduced and computed.Simulated and experimental results are presented to validate the correctness and effectiveness of the proposed improved VSynC to enhance the continuous operation performance of VSynC-based VSCs during grid voltage steady-state unbalance.展开更多
The doubly fed induction generator(DFIG) is major type of wind turbine generator used in grid-connected wind farms. Practical models of DFIG have been built to study the influence of wind power generation on power sys...The doubly fed induction generator(DFIG) is major type of wind turbine generator used in grid-connected wind farms. Practical models of DFIG have been built to study the influence of wind power generation on power system dynamics. However, most existing practical models of the DFIG are based on rectangular coordinates,in which frequency variation is neglected. In this paper, a phase-amplitude(P-A) model is proposed for a DFIG based on phase and amplitude of the internal voltage. The model structure is much like that of the synchronous generator, and the rotor voltage can manipulate both the amplitude and the phase of the internal voltage.Comparisons have been made between the new P-A model of the DFIG and the synchronous generator model,as well as the asynchronous motor model.The contributions of the new P-A model of the DFIG are discussed and it is demonstrated that the proposed model has better ability in describing power system dynamic phenomena such as voltage dynamics and structural dynamics. Simulation results and a field test validate these contributions.展开更多
Ternary III-V nanowires (NWs) cover a wide range of wavelengths in the solar spectrum and would greatly benefit from being synthesized as position-controlled arrays for improved vertical yield, reproducibility, and ...Ternary III-V nanowires (NWs) cover a wide range of wavelengths in the solar spectrum and would greatly benefit from being synthesized as position-controlled arrays for improved vertical yield, reproducibility, and tunable optical absorption. Here, we report on successful selective-area epitaxy of metal-particle-free vertical InxGa1-xP NW arrays using metal-organic vapor phase epitaxy and detail their optical properties. A systematic growth study establishes the range of suitable growth parameters to obtain uniform NW growth over a large array. The optical properties of the NWs were characterized by room-temperature cathodoluminescence spectroscopy. Tunability of the emission wavelength from 870 nm to approximately 800 nm was achieved. Transmission electron microscopy and energy dispersive X-ray measurements performed on cross- section samples revealed a pure wurtzite crystal structure with very few stacking faults and a slight composition gradient along the NW growth axis.展开更多
Line commutated converter based high voltage direct current(LCC-HVDC)links are widely employed for long distance bulk power transmission and asynchronous alternating current(AC)grid connections.However,LCC-HVDC system...Line commutated converter based high voltage direct current(LCC-HVDC)links are widely employed for long distance bulk power transmission and asynchronous alternating current(AC)grid connections.However,LCC-HVDC systems often suffer from commutation failures when AC voltage is distorted,oscillating or reduced by AC faults,which leads to overheating of converter valves and interruptions in transmitted power.All of which can have an adverse impact on the safety and stability of the entire power system.This paper proposes a supplementary control for mitigation of successive commutation failures on the basis of analyzing the influence of phase-locked loop(PLL)dynamics on the commutation process.By analyzing the impact of PLL dynamics on the actual leading angle,it is found that changes in the AC voltage phase remarkably influence commutation.Accordingly,the error between the AC voltage phase and PLL’s output angle is added to the output of the extinction angle or DC voltage control to mitigate the successive commutation failures of LCC-HVDC stations.Simulations conducted on the CIGRE benchmark model in PSCAD/EMTDC validate the performance of the supplementary control,which effectively mitigates successive commutation failures.展开更多
A crystal structure has a profound influence on the physical properties of the corresponding material.By synthesizing crystals with particular symmetries,one can strongly tune their properties,even for the same chemic...A crystal structure has a profound influence on the physical properties of the corresponding material.By synthesizing crystals with particular symmetries,one can strongly tune their properties,even for the same chemical configuration(compare graphite and diamond,for instance).Even more interesting opportunities arise when the structural phases of crystals can be changed dynamically through external stimulations.Such abilities,though rare,lead to a number of exciting phenomena,such as phase-change memory effects.In the case of trilayer graphene,there are two common stacking configurations(ABA and ABC)that have distinct electronic band structures and exhibit very different behaviors.Domain walls exist in the trilayer graphene with both stacking orders,showing fascinating new physics such as the quantum valley Hall effect.Extensive efforts have been dedicated to the phase engineering of trilayer graphene.However,the manipulation of domain walls to achieve precise control of local structures and properties remains a considerable challenge.Here,we experimentally demonstrate that we can switch from one structural phase to another by laser irradiation,creating domains of different shapes in trilayer graphene.The ability to control the position and orientation of the domain walls leads to fine control of the local structural phases and properties of graphene,offering a simple but effective approach to create artificial two-dimensional materials with designed atomic structures and electronic and optical properties.展开更多
Static synchronous compensators(STATCOM)can be used as a reactive power compensation for induction motor(IM)loads due to its effective control and good compensation.Terminal voltage control(TVC)in a STATCOM has a grea...Static synchronous compensators(STATCOM)can be used as a reactive power compensation for induction motor(IM)loads due to its effective control and good compensation.Terminal voltage control(TVC)in a STATCOM has a great influence on voltage dynamics which is a significant concern in a system with many IM loads.This paper investigates the interaction between IM loads and TVC in a STATCOM under weak grid conditions from the viewpoint of active and reactive power flow.A corresponding induction machine model is proposed,based on which the interaction mechanism between IM loads and TVC in a STATCOM can be intuitively understood.It is shown that the negative damping component provided by TVC in a STATCOM can lead to system oscillation instability.Grid strength and the inertia constant of the induction machine affect the extent of such interaction.Time-domain simulation results of IM loads connected to an infinite system through a long transmission line,with STATCOM compensation implemented in MATLAB/Simulink,validate the correctness of the analyses.展开更多
Transition metal dichalcogenide(TMD)alloys and heterostructures are attracting increasing attention thanks to their unique electronic,optical,and interfacial properties.However,the growth fundamental of TMD alloys and...Transition metal dichalcogenide(TMD)alloys and heterostructures are attracting increasing attention thanks to their unique electronic,optical,and interfacial properties.However,the growth fundamental of TMD alloys and heterostructures during one-step growth is still beyond understanding.Here,thermogravimetric(TG/DTG)technology is introduced to predict the evolution of the precursor(MoO_(3)and WO_(3))concentration in the vapor during growth.We establish the correlation between precursor concentration and the corresponding growth behavior.TG/DTG predication suggests that tuning precursor temperature and powder ratio can alter their concentration in the vapor,well explaining the formation of Mo_(x)W_(1-x)Se_(2) alloy or MoSe_(2)-WSe_(2) heterostructure at different growth conditions.Based on the TG/DTG analysis,we further design and grow a complex MoSe_(2)-Mo_(x)W_(1-x)Se_(2)-WSe_(2) heterostructure and Mo_(x)W_(1-x)Se_(2) monolayer alloys,confirming the validity of TG/DTG prediction in TMD crystal synthesis.Thus,employing TG/DTG to predict the synthesis of two-dimensional materials is of importance to understand the TMD growth behavior and provide guidance to the desired TMD heterostructure formation for future photoelectric devices.展开更多
Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applicati...Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.展开更多
Self-assembled GaN nanorods were grown by metal-organic chemical vapor deposition.A highly regular rosette-shaped cathodoluminescence pattern in the GaN nanorods is observed,where its origin is helpful to deepen the u...Self-assembled GaN nanorods were grown by metal-organic chemical vapor deposition.A highly regular rosette-shaped cathodoluminescence pattern in the GaN nanorods is observed,where its origin is helpful to deepen the understanding of GaN nanorod growth.The pattern forms at the very early stages of nanorod growth,which consists of yellow luminescence at the edges and the non-luminous region at six vertices of the hexagon.To clarify its origin,we carried out detailed cathodoluminescence studies,electron microscopy studies and nanoscale secondary ion mass spectrometry at both the nanorod surface and cross-section.We found the pattern is not related to optical resonance modes or polarity inversion,which are commonly reported in GaN nanostructures.After chemical composition and strain analysis,we found higher carbon and nitrogen cluster concentration and large compressive strain at the pattern area.The pattern formation may relate to facet preferential distribution of non-radiative recombination centers related to excess carbon/nitrogen.This work provides an insight into strain distribution and defect-related emission in GaN nanorod,which is critical for future optoelectronic applications.展开更多
Control constrained parabolic optimal control problems are generally challenging,from either theoretical analysis or algorithmic design perspectives.Conceptually,the well-known alternating direction method of multipli...Control constrained parabolic optimal control problems are generally challenging,from either theoretical analysis or algorithmic design perspectives.Conceptually,the well-known alternating direction method of multipliers(ADMM)can be directly applied to such problems.An attractive advantage of this direct ADMM application is that the control constraints can be untied from the parabolic optimal control problem and thus can be treated individually in the iterations.At each iteration of the ADMM,the main computation is for solving an unconstrained parabolic optimal control subproblem.Because of its inevitably high dimensionality after space-time discretization,the parabolicoptimal control subproblem at each iteration can be solved only inexactly by implementing certain numerical scheme internally and thus a two-layer nested iterative algorithm is required.It then becomes important to find an easily implementable and efficient inexactness criterion to perform the internal iterations,and to prove the overall convergence rigorously for the resulting two-layer nested iterative algorithm.To implement the ADMM efficiently,we propose an inexactness criterion that is independent of the mesh size of the involved discretization,and that can be performed automatically with no need to set empirically perceived constant accuracy a priori.The inexactness criterion turns out to allow us to solve the resulting parabolic optimal control subproblems to medium or even low accuracy and thus save computation significantly,yet convergence of the overall two-layer nested iterative algorithm can be still guaranteed rigorously.Efficiency of this ADMM implementation is promisingly validated by some numerical results.Our methodology can also be extended to a range of optimal control problems modeled by other linear PDEs such as elliptic equations,hyperbolic equations,convection-diffusion equations,and fractional parabolic equations.展开更多
Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement,thus is a promising method to form 2D/2D and 2D/3D heterojunction.Considering the unique optical properties of C...Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement,thus is a promising method to form 2D/2D and 2D/3D heterojunction.Considering the unique optical properties of CsPbI_(3) and transition metal dichalcogenides(TMDCs),their heterostructure present potential applications in both photonics and optoelectronics fields.Here,we demonstrate selective growth of cubic phase CsPbI_(3) nanofilm with thickness as thin as 4.0 nm and Zigzag/armchair orientated nanowires(NWs)on monolayer WSe_(2).Furthermore,we show growth of CsPbI_(3) on both transferred WSe_(2) on copper grid and WSe_(2) based optoelectrical devices,providing a platform for structure analysis and device performance modification.Transmission electron microscopy(TEM)results reveal the epitaxial nature of cubic CsPbI_(3) phase.The revealed growth fundamental of CsPbI_(3) is universal valid for other twodimensional substrates,offering a great advantage to fabricate CsPbI_(3) based van der Waals heterostructures(vdWHs).X-ray photoelectron spectroscopy(XPS)and optical characterization confirm the type-II band alignment,resulting in a fast charger transfer process and the occurrence of a broad emission peak with lower energy.The formation of WSe_(2)/CsPbI_(3) heterostructure largely enhance the photocurrent from 2.38 nA to 38.59 nA.These findings are vital for bottom-up epitaxy of inorganic semiconductor on atomic thin 2D substrates for optoelectronic applications.展开更多
基金supported in part by the National Natural Science Foundation of China(62371116 and 62231020)in part by the Science and Technology Project of Hebei Province Education Department(ZD2022164)+2 种基金in part by the Fundamental Research Funds for the Central Universities(N2223031)in part by the Open Research Project of Xidian University(ISN24-08)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(Guilin University of Electronic Technology,China,CRKL210203)。
文摘High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV.
基金financial support from the National Natural Science Foundation of China(Nos.61874141,11904239)Natural Science Foundation of Hunan Province(Grant Nos.2021JJ40709,2021JJ20080,2022JJ20080)+2 种基金Postgraduate Innovative Project of Central South University(Grant No.2021zzts0056)Open Sharing Found for the Large-scale Instruments and Equipment of Central South Universitysupported in part by the High Performance Computing Center of Central South University。
文摘Two-dimensional(2D)nonlinear optical mediums with high and tunable light modulation capability can significantly stimulate the development of ultrathin,compact,and integrated optoelectronics devices and photonic elements.2D carbides and nitrides of transition metals(MXenes)are a new class of 2D materials with excellent intrinsic and strong light-matter interaction characteristics.However,the current understanding of their photo-physical properties and strategies for improving optical performance is insufficient.To address this issue,we rationally designed and in situ synthesized a 2D Nb_(2)C/MoS_(2) heterostructure that outperforms pristine Nb2C in both linear and nonlinear optical performance.Excellent agreement between experimental and theoretical results demonstrated that the Nb_(2)C/MoS_(2) inherited the preponderance of Nb_(2)C and MoS_(2) in absorption at different wavelengths,resulting in the broadband enhanced optical absorption characteristics.In addition to linear optical modulation,we also achieved stronger near infrared nonlinear optical modulation,with a nonlinear absorption coefficient of Nb_(2)C/MoS_(2) being more than two times that of the pristine Nb_(2)C.These results were supported by the band alinement model which was determined by the X-ray photoelectron spectroscopy(XPS)experiment and first-principal theory calculation.The presented facile synthesis approach and robust light modulation strategy pave the way for broadband optoelectronic devices and optical modulators.
基金supported by the National Natural Science Foundation of China under Grant No.61901099, 61972076, 61973069 and 62061006the Natural Science Foundation of Hebei Province under Grant No.F2020501037the Natural Science Foundation of Guangxi under Grant No.2018JJA170167
文摘Data sharing in Internet of Vehicles(IoV)makes it possible to provide personalized services for users by service providers in Intelligent Transportation Systems(ITS).As IoV is a multi-user mobile scenario,the reliability and efficiency of data sharing need to be further enhanced.Federated learning allows the server to exchange parameters without obtaining private data from clients so that the privacy is protected.Broad learning system is a novel artificial intelligence technology that can improve training efficiency of data set.Thus,we propose a federated bidirectional connection broad learning scheme(FeBBLS)to solve the data sharing issues.Firstly,we adopt the bidirectional connection broad learning system(BiBLS)model to train data set in vehicular nodes.The server aggregates the collected parameters of BiBLS from vehicular nodes through the federated broad learning system(FedBLS)algorithm.Moreover,we propose a clustering FedBLS algorithm to offload the data sharing into clusters for improving the aggregation capability of the model.Some simulation results show our scheme can improve the efficiency and prediction accuracy of data sharing and protect the privacy of data sharing.
基金National Natural Science Foundation of China(Grant Nos.52175066,51805468)Hebei Provincial National Natural Science Foundation of China(Grant No.E2020203090)+1 种基金Science and Technology Project of Hebei Education Department of China(Grant No.ZD2022052)Open Foundation of the Key Laboratory of Fire Emergency Rescue Equipment of China(Grant No.2020XFZB07).
文摘Existing models of bulk modulus for aerated hydraulic fluids primarily focus on the effects of pressure and air fraction,whereas the effect of temperature on bulk modulus is disregarded.Based on the lumped parameter method and the full cavitation model,combined with the improved Henry’s law and the air polytropic course equation,a theoretical model of dynamic bulk modulus for an aerated hydraulic fluid is derived.The effects of system pressure,air fraction,and temperature on bulk modulus are investigated using the controlled variable method.The results show that the dynamic bulk modulus of the aerated hydraulic fluid is inconsistent during the compression process.At the same pressure point,the dynamic bulk modulus during expansion is higher than that during compression.Under the same initial air faction and pressure changing period,a higher temperature results in a lower dynamic bulk modulus.When the pressure is lower,the dynamic bulk modulus of each temperature point is more similar to each other.By comparing the theoretical results with the actual dynamic bulk modulus of the Shell Tellus S ISO32 standard air-containing oil,the goodness-of-fit between the theoretical model and experimental value at three temperatures is 0.9726,0.9732,and 0.9675,which validates the theoretical model.In this study,a calculation model of dynamic bulk modulus that considers temperature factors is proposed.It predicts the dynamic bulk modulus of aerated hydraulic fluids at different temperatures and provides a theoretical basis for improving the analytical model of bulk modulus.
文摘Wind power has been developing rapidly in major countries in the past 10 years.The distinct static and dynamic characteristics of output power compared with conventional generations pose significant challenges on power system adequacy and stability and constraints on the penetration level of wind power in power systems.Based on the uniqueness of wind power versus conventional generations,we discuss its implications on power system adequacy and stability and propose basic solutions for facilitating largescale integrations of wind power into the power system.
基金supported by National Natural Science Foundation of China (No.51607130)National Key Research and Development Program (No.2016YFB0900104)National Natural Science Fund for Excellent Young Scholars (No.51322704)
文摘This paper presents an improved virtual synchronous control(VSynC) for the grid-connected voltage source converter(VSC) so as to continuously operate under the grid voltage with steady unbalance.The improved VSynC introduces the negative sequence power controls on basis of conventional VSynC.The improved VSynC is capable of regulating the negative sequence internal voltage to reduce the negative-sequence injected currents and oscillated powers of the VSC aroused by the negative-sequence grid voltage.Three alternative local control objectives for the VSC itself under steady state unbalanced grid conditions and their corresponding power references are deduced and computed.Simulated and experimental results are presented to validate the correctness and effectiveness of the proposed improved VSynC to enhance the continuous operation performance of VSynC-based VSCs during grid voltage steady-state unbalance.
文摘The doubly fed induction generator(DFIG) is major type of wind turbine generator used in grid-connected wind farms. Practical models of DFIG have been built to study the influence of wind power generation on power system dynamics. However, most existing practical models of the DFIG are based on rectangular coordinates,in which frequency variation is neglected. In this paper, a phase-amplitude(P-A) model is proposed for a DFIG based on phase and amplitude of the internal voltage. The model structure is much like that of the synchronous generator, and the rotor voltage can manipulate both the amplitude and the phase of the internal voltage.Comparisons have been made between the new P-A model of the DFIG and the synchronous generator model,as well as the asynchronous motor model.The contributions of the new P-A model of the DFIG are discussed and it is demonstrated that the proposed model has better ability in describing power system dynamic phenomena such as voltage dynamics and structural dynamics. Simulation results and a field test validate these contributions.
文摘Ternary III-V nanowires (NWs) cover a wide range of wavelengths in the solar spectrum and would greatly benefit from being synthesized as position-controlled arrays for improved vertical yield, reproducibility, and tunable optical absorption. Here, we report on successful selective-area epitaxy of metal-particle-free vertical InxGa1-xP NW arrays using metal-organic vapor phase epitaxy and detail their optical properties. A systematic growth study establishes the range of suitable growth parameters to obtain uniform NW growth over a large array. The optical properties of the NWs were characterized by room-temperature cathodoluminescence spectroscopy. Tunability of the emission wavelength from 870 nm to approximately 800 nm was achieved. Transmission electron microscopy and energy dispersive X-ray measurements performed on cross- section samples revealed a pure wurtzite crystal structure with very few stacking faults and a slight composition gradient along the NW growth axis.
基金supported in part by the Joint Fund Program of National Natural Science Fund of China under Grant No.U1766202.
文摘Line commutated converter based high voltage direct current(LCC-HVDC)links are widely employed for long distance bulk power transmission and asynchronous alternating current(AC)grid connections.However,LCC-HVDC systems often suffer from commutation failures when AC voltage is distorted,oscillating or reduced by AC faults,which leads to overheating of converter valves and interruptions in transmitted power.All of which can have an adverse impact on the safety and stability of the entire power system.This paper proposes a supplementary control for mitigation of successive commutation failures on the basis of analyzing the influence of phase-locked loop(PLL)dynamics on the commutation process.By analyzing the impact of PLL dynamics on the actual leading angle,it is found that changes in the AC voltage phase remarkably influence commutation.Accordingly,the error between the AC voltage phase and PLL’s output angle is added to the output of the extinction angle or DC voltage control to mitigate the successive commutation failures of LCC-HVDC stations.Simulations conducted on the CIGRE benchmark model in PSCAD/EMTDC validate the performance of the supplementary control,which effectively mitigates successive commutation failures.
基金supported by the National Key R&D Program of China(no.2018YFA0306900)the financial support from the National Key R&D Program of China(no.2018YFA0306900)+6 种基金the National Natural Science Foundation of China(no.11804386)the financial support from the National Key R&D Program of China(no.2017YFA0403200)the National Natural Science Foundation of China(no.11774429)the NSAF(no.U1830206)the financial support from the National Key Research and Development Program of China(grant no.2016YFA0203500)the National Natural Science Foundation of China(grant no.11874407)the Strategic Priority Research Program of Chinese Academy of Science(grant no.XDB 30000000).
文摘A crystal structure has a profound influence on the physical properties of the corresponding material.By synthesizing crystals with particular symmetries,one can strongly tune their properties,even for the same chemical configuration(compare graphite and diamond,for instance).Even more interesting opportunities arise when the structural phases of crystals can be changed dynamically through external stimulations.Such abilities,though rare,lead to a number of exciting phenomena,such as phase-change memory effects.In the case of trilayer graphene,there are two common stacking configurations(ABA and ABC)that have distinct electronic band structures and exhibit very different behaviors.Domain walls exist in the trilayer graphene with both stacking orders,showing fascinating new physics such as the quantum valley Hall effect.Extensive efforts have been dedicated to the phase engineering of trilayer graphene.However,the manipulation of domain walls to achieve precise control of local structures and properties remains a considerable challenge.Here,we experimentally demonstrate that we can switch from one structural phase to another by laser irradiation,creating domains of different shapes in trilayer graphene.The ability to control the position and orientation of the domain walls leads to fine control of the local structural phases and properties of graphene,offering a simple but effective approach to create artificial two-dimensional materials with designed atomic structures and electronic and optical properties.
基金supported in part by National Basic Research Program of China (973 Program) (No.2012CB215100)Major Program of National Natural Science Foundation of China (No.51190104)National Natural Science Fund for Excellent Young Scholars (No.51322704)
文摘Static synchronous compensators(STATCOM)can be used as a reactive power compensation for induction motor(IM)loads due to its effective control and good compensation.Terminal voltage control(TVC)in a STATCOM has a great influence on voltage dynamics which is a significant concern in a system with many IM loads.This paper investigates the interaction between IM loads and TVC in a STATCOM under weak grid conditions from the viewpoint of active and reactive power flow.A corresponding induction machine model is proposed,based on which the interaction mechanism between IM loads and TVC in a STATCOM can be intuitively understood.It is shown that the negative damping component provided by TVC in a STATCOM can lead to system oscillation instability.Grid strength and the inertia constant of the induction machine affect the extent of such interaction.Time-domain simulation results of IM loads connected to an infinite system through a long transmission line,with STATCOM compensation implemented in MATLAB/Simulink,validate the correctness of the analyses.
基金The National Natural Science Foundation of Giina(Nos.51702368,61974166,and 11674401)the Natural Science Foundation of Hunan Province(Nos.2018JJ3684 and 2019JJ40358)+1 种基金Innovation-Driven Project of Central South University(No.2018CX045)the Mechanism Research Funds for the Central South University(No.1053320181264)are acknowledged for financial support.
文摘Transition metal dichalcogenide(TMD)alloys and heterostructures are attracting increasing attention thanks to their unique electronic,optical,and interfacial properties.However,the growth fundamental of TMD alloys and heterostructures during one-step growth is still beyond understanding.Here,thermogravimetric(TG/DTG)technology is introduced to predict the evolution of the precursor(MoO_(3)and WO_(3))concentration in the vapor during growth.We establish the correlation between precursor concentration and the corresponding growth behavior.TG/DTG predication suggests that tuning precursor temperature and powder ratio can alter their concentration in the vapor,well explaining the formation of Mo_(x)W_(1-x)Se_(2) alloy or MoSe_(2)-WSe_(2) heterostructure at different growth conditions.Based on the TG/DTG analysis,we further design and grow a complex MoSe_(2)-Mo_(x)W_(1-x)Se_(2)-WSe_(2) heterostructure and Mo_(x)W_(1-x)Se_(2) monolayer alloys,confirming the validity of TG/DTG prediction in TMD crystal synthesis.Thus,employing TG/DTG to predict the synthesis of two-dimensional materials is of importance to understand the TMD growth behavior and provide guidance to the desired TMD heterostructure formation for future photoelectric devices.
基金This work was supported in part by the National Basic Research Program of China (973 Program) (Grant No. 2012CB215100), and the Major Program of the National Natural Science Foundation of China (Grant No. 51190104).
文摘Electric power infrastructure has recently undergone a comprehensive transformation from electromagnetics to semiconductors. Such a development is attributed to the rapid growth of power electronic converter applications in the load side to realize energy conservation and on the supply side for renewable generations and power transmissions using high voltage direct current transmission. This transformation has altered the fundamental mechanism of power system dynamics, which demands the establishment of a new theory for power system control and protection. This paper presents thoughts on a theoretical framework for the coming semiconducting power systems.
基金B.J.Z.would like to thank the China Scholarship Council and the Australia National University for her scholarship supportX.Y.thanks the National Natural Science Foundation of China(Nos.61974166 and 51702368)for financial supportWe would like to thank Dr.Xu Zhang from Zhengzhou University for helpful discussion on some of the strain aspects in this work.
文摘Self-assembled GaN nanorods were grown by metal-organic chemical vapor deposition.A highly regular rosette-shaped cathodoluminescence pattern in the GaN nanorods is observed,where its origin is helpful to deepen the understanding of GaN nanorod growth.The pattern forms at the very early stages of nanorod growth,which consists of yellow luminescence at the edges and the non-luminous region at six vertices of the hexagon.To clarify its origin,we carried out detailed cathodoluminescence studies,electron microscopy studies and nanoscale secondary ion mass spectrometry at both the nanorod surface and cross-section.We found the pattern is not related to optical resonance modes or polarity inversion,which are commonly reported in GaN nanostructures.After chemical composition and strain analysis,we found higher carbon and nitrogen cluster concentration and large compressive strain at the pattern area.The pattern formation may relate to facet preferential distribution of non-radiative recombination centers related to excess carbon/nitrogen.This work provides an insight into strain distribution and defect-related emission in GaN nanorod,which is critical for future optoelectronic applications.
基金supported by the seed fund for basic research at The University of Hong Kong(project No.201807159005)a General Research Fund from Hong Kong Research Grants Council。
文摘Control constrained parabolic optimal control problems are generally challenging,from either theoretical analysis or algorithmic design perspectives.Conceptually,the well-known alternating direction method of multipliers(ADMM)can be directly applied to such problems.An attractive advantage of this direct ADMM application is that the control constraints can be untied from the parabolic optimal control problem and thus can be treated individually in the iterations.At each iteration of the ADMM,the main computation is for solving an unconstrained parabolic optimal control subproblem.Because of its inevitably high dimensionality after space-time discretization,the parabolicoptimal control subproblem at each iteration can be solved only inexactly by implementing certain numerical scheme internally and thus a two-layer nested iterative algorithm is required.It then becomes important to find an easily implementable and efficient inexactness criterion to perform the internal iterations,and to prove the overall convergence rigorously for the resulting two-layer nested iterative algorithm.To implement the ADMM efficiently,we propose an inexactness criterion that is independent of the mesh size of the involved discretization,and that can be performed automatically with no need to set empirically perceived constant accuracy a priori.The inexactness criterion turns out to allow us to solve the resulting parabolic optimal control subproblems to medium or even low accuracy and thus save computation significantly,yet convergence of the overall two-layer nested iterative algorithm can be still guaranteed rigorously.Efficiency of this ADMM implementation is promisingly validated by some numerical results.Our methodology can also be extended to a range of optimal control problems modeled by other linear PDEs such as elliptic equations,hyperbolic equations,convection-diffusion equations,and fractional parabolic equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.61974166 and 62274184)the Hunan Provincial Natural Science Foundation of China(Grant Nos.2021JJ20080 and 2021JJ20077)。
文摘Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement,thus is a promising method to form 2D/2D and 2D/3D heterojunction.Considering the unique optical properties of CsPbI_(3) and transition metal dichalcogenides(TMDCs),their heterostructure present potential applications in both photonics and optoelectronics fields.Here,we demonstrate selective growth of cubic phase CsPbI_(3) nanofilm with thickness as thin as 4.0 nm and Zigzag/armchair orientated nanowires(NWs)on monolayer WSe_(2).Furthermore,we show growth of CsPbI_(3) on both transferred WSe_(2) on copper grid and WSe_(2) based optoelectrical devices,providing a platform for structure analysis and device performance modification.Transmission electron microscopy(TEM)results reveal the epitaxial nature of cubic CsPbI_(3) phase.The revealed growth fundamental of CsPbI_(3) is universal valid for other twodimensional substrates,offering a great advantage to fabricate CsPbI_(3) based van der Waals heterostructures(vdWHs).X-ray photoelectron spectroscopy(XPS)and optical characterization confirm the type-II band alignment,resulting in a fast charger transfer process and the occurrence of a broad emission peak with lower energy.The formation of WSe_(2)/CsPbI_(3) heterostructure largely enhance the photocurrent from 2.38 nA to 38.59 nA.These findings are vital for bottom-up epitaxy of inorganic semiconductor on atomic thin 2D substrates for optoelectronic applications.