The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anae...The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anaerobic digestion(TSAD),in which the FW is transformed to biohythane,a gaseous mixture of biomethane and biohydrogen.This review summarises the main characteristics of FW and describes the basic principle of TSAD.Moreover,the factors influencing the TSAD performance are identified,and an overview of the research status;economic aspects;and strategies such as pre-treatment,co-digestion,and regulation of microbial consortia to increase the biohythane yield from TSAD is provided.Additionally,the challenges and future considerations associated with the treatment of FW by TSAD are highlighted.This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51978498 and 52131002)the National Key R&D Program of China(No.2019YFC1906301)。
文摘The biotransformation of food waste(FW)to bioenergy has attracted considerable research attention as a means to address the energy crisis and waste disposal problems.To this end,a promising technique is two-stage anaerobic digestion(TSAD),in which the FW is transformed to biohythane,a gaseous mixture of biomethane and biohydrogen.This review summarises the main characteristics of FW and describes the basic principle of TSAD.Moreover,the factors influencing the TSAD performance are identified,and an overview of the research status;economic aspects;and strategies such as pre-treatment,co-digestion,and regulation of microbial consortia to increase the biohythane yield from TSAD is provided.Additionally,the challenges and future considerations associated with the treatment of FW by TSAD are highlighted.This paper can provide valuable reference for the improvement and widespread implementation of TSAD-based FW treatment.