Background Gaining more information about the reciprocal associations between different biomarkers within the ATN(Amyloid/Tau/Neurodegeneration)framework across the Alzheimer’s disease(AD)spectrum is clinically relev...Background Gaining more information about the reciprocal associations between different biomarkers within the ATN(Amyloid/Tau/Neurodegeneration)framework across the Alzheimer’s disease(AD)spectrum is clinically relevant.We aimed to conduct a comprehensive head-to-head comparison of plasma and positron emission tomography(PET)ATN biomarkers in subjects with cognitive complaints.Methods A hospital-based cohort of subjects with cognitive complaints with a concurrent blood draw and ATN PET imaging(18F-florbetapir for A,18F-Florzolotau for T,and 18F-fluorodeoxyglucose[18F-FDG]for N)was enrolled(n=137).Theβ-amyloid(Aβ)status(positive versus negative)and the severity of cognitive impairment served as the main outcome measures for assessing biomarker performances.Results Plasma phosphorylated tau 181(p-tau181)level was found to be associated with PET imaging of ATN biomarkers in the entire cohort.Plasma p-tau181 level and PET standardized uptake value ratios of AT biomarkers showed a similarly excellent diagnostic performance for distinguishing between Aβ+and Aβ−subjects.An increased tau burden and glucose hypometabolism were significantly associated with the severity of cognitive impairment in Aβ+subjects.Additionally,glucose hypometabolism-along with elevated plasma neurofilament light chain level-was related to more severe cognitive impairment in Aβ−subjects.Conclusion Plasma p-tau181,as well as 18F-florbetapir and 18F-Florzolotau PET imaging can be considered as interchangeable biomarkers in the assessment of Aβstatus in symptomatic stages of AD.18F-Florzolotau and 18F-FDG PET imaging could serve as biomarkers for the severity of cognitive impairment.Our findings have implications for establishing a roadmap to identifying the most suitable ATN biomarkers for clinical use.展开更多
基金supported by grants from the National Natural Science Foundation of China(81971641,82071200,82272039,and 82021002)the STI2030-Major Project(2022ZD0211600)+2 种基金the Clinical Research Plan of Shanghai Hospital Development Center(SHDC2020CR1038B,SHDC2020CR4007)the National Key R&D Program of China(2022YFC2009902,2022YFC2009900)Medical Innovation Research Project of Shanghai Science and Technology Commission(21Y11903300).
文摘Background Gaining more information about the reciprocal associations between different biomarkers within the ATN(Amyloid/Tau/Neurodegeneration)framework across the Alzheimer’s disease(AD)spectrum is clinically relevant.We aimed to conduct a comprehensive head-to-head comparison of plasma and positron emission tomography(PET)ATN biomarkers in subjects with cognitive complaints.Methods A hospital-based cohort of subjects with cognitive complaints with a concurrent blood draw and ATN PET imaging(18F-florbetapir for A,18F-Florzolotau for T,and 18F-fluorodeoxyglucose[18F-FDG]for N)was enrolled(n=137).Theβ-amyloid(Aβ)status(positive versus negative)and the severity of cognitive impairment served as the main outcome measures for assessing biomarker performances.Results Plasma phosphorylated tau 181(p-tau181)level was found to be associated with PET imaging of ATN biomarkers in the entire cohort.Plasma p-tau181 level and PET standardized uptake value ratios of AT biomarkers showed a similarly excellent diagnostic performance for distinguishing between Aβ+and Aβ−subjects.An increased tau burden and glucose hypometabolism were significantly associated with the severity of cognitive impairment in Aβ+subjects.Additionally,glucose hypometabolism-along with elevated plasma neurofilament light chain level-was related to more severe cognitive impairment in Aβ−subjects.Conclusion Plasma p-tau181,as well as 18F-florbetapir and 18F-Florzolotau PET imaging can be considered as interchangeable biomarkers in the assessment of Aβstatus in symptomatic stages of AD.18F-Florzolotau and 18F-FDG PET imaging could serve as biomarkers for the severity of cognitive impairment.Our findings have implications for establishing a roadmap to identifying the most suitable ATN biomarkers for clinical use.