期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Impact of Mid-and Upper-Level Dry Air on Tropical Cyclone Genesis and Intensification:A Modeling Study of Durian(2001) 被引量:5
1
作者 Yaping WANG Yongjie HUANG xiaopeng cui 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第12期1505-1521,共17页
The impact of mid-and upper-level dry air,represented by low relative humidity(RH)values,on the genesis of tropical cyclone(TC)Durian(2001)in the South China Sea was investigated by a series of numerical experiments u... The impact of mid-and upper-level dry air,represented by low relative humidity(RH)values,on the genesis of tropical cyclone(TC)Durian(2001)in the South China Sea was investigated by a series of numerical experiments using the Weather Research and Forecasting model.The mid-level RH was lowered in different regions relative to TC Durian(2001)’s genesis location.Results suggest that the location of dry air was important to Durian(2001)’s genesis and intensification.The rapid development of the TC was accompanied by sustained near-saturated mid-and upper-level air,whereas low humidity decelerated its development.Water vapor budget analysis showed that moisture at mid and upper levels was mainly supplied by the vertical convergence of moisture flux and the divergence terms,and consumed by the condensation process.The horizontal convergence of moisture flux term supplied moisture in the air moistening process but consumed moisture in the air drying process.With a dryer mid-and upper-level environment,convective and stratiform precipitation were both inhibited.The upward mass fluxes and the diabatic heating rates associated with these two precipitation types were also suppressed.Generally,convection played the dominant role,since the impact of the stratiform process on vertical mass transportation and diabatic heating was much weaker.The vorticity budget showed that the negative vorticity convergence term,which was closely related to the inhibited convection,caused the vorticity to decrease above the lower troposphere in a dryer environment.The negative vorticity tendency is suggested to slow down the vertical coherence and the development rate of TCs. 展开更多
关键词 tropical cyclone formation mid-and upper-level dry air WRF water vapor budget convective and STRATIFORM precipitation
下载PDF
锌盐类成核剂对聚(1-丁烯)结晶性能的影响
2
作者 崔晓鹏 董小芳 +3 位作者 李闯 顾高生 公衍峰 刘宾元 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2021年第6期65-70,共6页
采用偏光显微镜、差示扫描量热仪和傅里叶变换红外光谱仪等方法研究了降冰片烯二羧酸锌(NED-Zn)和ZnO成核剂对聚(1-丁烯)结晶及晶型转变的影响,并用Jeziorny法分析了聚(1-丁烯)的非等温结晶过程。结果表明,2种成核剂的加入使得聚(1-丁烯... 采用偏光显微镜、差示扫描量热仪和傅里叶变换红外光谱仪等方法研究了降冰片烯二羧酸锌(NED-Zn)和ZnO成核剂对聚(1-丁烯)结晶及晶型转变的影响,并用Jeziorny法分析了聚(1-丁烯)的非等温结晶过程。结果表明,2种成核剂的加入使得聚(1-丁烯)的结晶温度升高、结晶速率加快,NED-Zn的成核效果优于ZnO。NED-Zn和ZnO成核剂的存在加快了PB的Ⅱ-Ⅰ晶型转变,使Ⅱ-Ⅰ半转变时间由39.2 h分别缩短至8.1 h和19.2 h。 展开更多
关键词 聚(1-丁烯) 成核剂 非等温结晶 Ⅱ-Ⅰ晶型转变
下载PDF
Differences between Convective and Stratiform Precipitation Budgets in a Torrential Rainfall Event 被引量:4
3
作者 Yongjie HUANG Yaping WANG xiaopeng cui 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第5期495-509,共15页
Differences in rainfall budgets between convective and stratiform regions of a torrential rainfall event were investigated using high-resolution simulation data produced by the Weather Research and Forecasting(WRF) mo... Differences in rainfall budgets between convective and stratiform regions of a torrential rainfall event were investigated using high-resolution simulation data produced by the Weather Research and Forecasting(WRF) model. The convective and stratiform regions were reasonably separated by the radar-based convective–stratiform partitioning method, and the threedimensional WRF-based precipitation equation combining water vapor and hydrometeor budgets was further used to analyze the rainfall budgets. The results showed that the magnitude of precipitation budget processes in the convective region was one order larger than that in the stratiform region. In convective/stratiform updraft regions, precipitation was mainly from the contribution of moisture-related processes, with a small negative contribution from cloud-related processes. In convective/stratiform downdraft regions, cloud-related processes played positive roles in precipitation, while moisture-related processes made a negative contribution. Moisture flux convergence played a dominant role in the moisture-related processes in convective or stratiform updraft regions, which was closely related to large-scale dynamics. Differences in cloud-related processes between convective and stratiform regions were more complex compared with those in moisture-related processes.Both liquid-and ice-phase microphysical processes were strong in convective/stratiform updraft regions, and ice-phase processes were dominant in convective/stratiform downdraft regions. There was strong net latent heating within almost the whole troposphere in updraft regions, especially in the convective updraft region, while the net latent heating(cooling) mainly existed above(below) the zero-layer in convective/stratiform downdraft regions. 展开更多
关键词 CONVECTIVE RAINFALL STRATIFORM RAINFALL precipitation BUDGET UPDRAFT REGION downdraft REGION
下载PDF
Surface Rainfall Processes during the Genesis Period of Tropical Cyclone Durian(2001) 被引量:1
4
作者 Yaping WANG Yongjie HUANG xiaopeng cui 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第4期451-464,共14页
The rainfall processes during the formation of tropical cyclone(TC) Durian(2001) were investigated quantitatively using the three-dimensional(3 D) WRF-based precipitation equation. The rain rate(PS) decreased slightly... The rainfall processes during the formation of tropical cyclone(TC) Durian(2001) were investigated quantitatively using the three-dimensional(3 D) WRF-based precipitation equation. The rain rate(PS) decreased slightly as the TC approached to formation, and then increased as Durian began to intensify. The rate of moisture-related processes(QWV) in the equation contributed around 80% to PSbefore TC genesis, and made more contribution during and after TC genesis. The rate of hydrometeor-related processes(QCM) contributed about 20% before TC formation, followed by less contribution during and after TC formation. QWVwere dominated by the 3 D moisture flux advection rate(QWVA), while the surface evaporation rate(QWVE) also played an important role. Just before TC genesis, moisture from QWVAand QWVEhelped the local atmosphere moisten(negative QWVL). QCMwere determined by the 3 D hydrometeor advection rates(QCLAand QCIA) and the local change rates of hydrometeors(QCLLand QCIL). During TC formation, QCMlargely decreased and then reactivated as Durian began to intensify, accompanied by the development of TC cloud. Both the height and the strength of the net latent heating center associated with microphysical processes generally lowered before and during TC genesis, resulting mainly from lessening deposition and condensation. The downward shift of the net latent heating center induced a more bottom-heavy upward mass flux profile, suggesting to promote lower-tropospheric convergence in a shallower layer, vorticity amplification and TC spin-up. 展开更多
关键词 SURFACE RAINFALL processes tropical CYCLONE formation three-dimensional precipitation equation LATENT heating
下载PDF
A Case Study on the Rapid Rain-to-Snow Transition in Late Spring 2018 over Northern China:Effects of Return Flows and Topography 被引量:2
5
作者 Wenlong ZHANG xiaopeng cui +3 位作者 Bolong DUAN Bo YU Runxia GUO Haiwen LIU 《Journal of Meteorological Research》 SCIE CSCD 2022年第1期107-127,共21页
Phase changes in the precipitation processes of early winter and late spring in midlatitude regions represent challenges when forecasting the timing and magnitude of snowfall.On 4 April 2018,a heavy snow process occur... Phase changes in the precipitation processes of early winter and late spring in midlatitude regions represent challenges when forecasting the timing and magnitude of snowfall.On 4 April 2018,a heavy snow process occurred in Beijing and northwestern Hebei Province,becoming the most delayed occurrence of heavy spring snow ever recorded over Beijing in the last 30 years.This paper uses observational and numerical simulation data to investigate the causes for the rapid rain-to-snow(RRTS)phase transition during this process.The following results are obtained.(1)Return flows(RFs),an interesting type of easterly wind,including those at 1000,925,and 800 hPa,played an important role in this heavy snow process and presented a characteristic"sandwich"structure.The RFs,complex topography,and snow particles that dominated the clouds,were the three key factors for the RRTS transition.(2)The RRTS transition in the plains was directly related to the RF at 925 hPa,which brought about advective cooling initiated approximately 4-6 h before the onset of precipitation.Then,the RF played a role of diabatic cooling when snow particles began to fall at the onset of precipitation.(3)The RRTS transition in the northern part of the Taihang Mountains was closely related to the relatively high altitude that led to a lower surface temperature owing to the vertical temperature lapse rate.Both immediately before and after the onset of precipitation,the snow particles in clouds entrained the middle-level cold air downward,causing the melting layer(from surface to the 0℃-isotherm level)to become very thin;and thus the snow particles did not have adequate time to melt before falling to the ground.(4)The rapid RRTS over the Yanqing mountainous area in the northwest of Beijing could have involved all the three concurrent mechanisms:the advective cooling of RF,the melting cooling of cloud snow particles,and the high-altitude effect.Compared with that in the plain area with less urbanization the duration of the RRTS in the plain area with significant urbanization was extended by approximately 2 h. 展开更多
关键词 midlatitude heavy snow return flow phase transition Bohai Sea cold pool complex terrain numerical simulation
原文传递
Characteristics and mechanism of vertical coupling in the genesis of tropical cyclone Durian(2001)
6
作者 Wenlong ZHANG xiaopeng cui Jianxi DONG 《Science China Earth Sciences》 SCIE EI CSCD 2021年第3期440-457,共18页
The vertical coupling(VC)process and mechanism during the genesis of a tropical cyclone(TC)implied by the weak vertical shear of horizontal wind,one of the key factors impacting TC genesis,constitute important but una... The vertical coupling(VC)process and mechanism during the genesis of a tropical cyclone(TC)implied by the weak vertical shear of horizontal wind,one of the key factors impacting TC genesis,constitute important but unanswered fundamental scientific problems.This paper carried out a targeted investigation of this problem through numerical simulation and theoretical analyses.The main conclusions are as follows.Even if TC genesis occurs in a barotropic environment,a VC process still occurs between the trough(vortex)at the middle level and that at the lower level in the TC embryo area.VC mainly occurs at the tropical disturbance(TDS)stage.Only after the VC is accomplished can the tropical depression(TD)organize further by itself and develop into the tropical storm(TS)stage or the stronger tropical typhoon(TY)stage through the WISHE(wind-induced surface heat exchange)mechanism.In the VC process,vortical hot towers(VHTs)play vertical connecting roles and are the actual practitioners of the VC.Through the VHTs’vertical connections,the middle-and lower-troposphere trough axes move towards each other and realize the VC.VHTs can produce intensive cyclonic vorticity in the lower troposphere,which is mainly contributed by the stretching term.The tilting term can produce a single dipole or double dipole of vorticity,but the positive and negative vorticity pairs offset each other roughly.While the stretching term ensures that the cyclonic rotations of the wind field in the middle and lower levels tend to be consistent,the tilting term acts to uniformly distribute the horizontal wind in the vertical direction,and both terms facilitate the VC of the wind field.With the latent heat of condensation,VHTs heat the upper and middle troposphere so that the 352 K equivalent potential temperature contour penetrates vertically into the 925–300 hPa layer,realizing the VC of the temperature field.While forming cloud towers,VHTs make the ambient air become moist and nearly saturated so that the 95%relative humidity contour penetrates vertically into the 925–400 hPa layer,realizing the VC of the humidity field.Due to the collective contributions of the VHTs,the embryo area develops into a warm,nearly saturated core with strong cyclonic vorticity.The barotropic instability mechanism may also occur during TC genesis over the Northwest Pacific and provide rich large-scale environmental vorticity for TC genesis.The axisymmetric distribution of VHTs is an important sign of TC genesis.When a TC is about to form,there may be accompanying phenomena between the axisymmetric process of VHTs and vortex Rossby waves. 展开更多
关键词 Genesis of tropical cyclones Vertical coupling Vortical hot tower Axisymmetric distribution Barotropic instability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部