期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hydrothermal synthesis of hierarchical SnO_(2)nanomaterials for high-efficiency detection of pesticide residue 被引量:1
1
作者 Haijie Cai xiaopeng qiao +7 位作者 Meilian Chen Dongsheng Feng Abdulaziz AAlghamdi Fahad A.Alharthi Yingjie Pan Yong Zhao Yongheng Zhu Yonghui Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第4期1502-1506,共5页
Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently de... Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently detection of acephate.In this study,hierarchical assembled SnO_(2)nanosphere,SnO_(2)hollow nanosphere and SnO_2 nanoflower were synthesized respectively as high efficiency sensing materials to build rapid and selective acephate pesticide residues sensors.The morphologies of different SnO_(2)3 D nanostructures were characterized by various material characterization technology.The sensitive performance test results of the 3 D SnO_(2)nanomaterials towards acephate show that hollow nanosphere SnO_(2)based sensor displayed preferable sensitivity,selectivity,and rapid response(9 s)properties toward acephate at the optimal working temperature(300℃).This SnO_(2)hollow nanosphere based gas sensor represents a useful tool for simple and highly effective monitoring of acephate pesticide residues in food and environment.According to the characterization results,particularly Brunauer-Emmett-Teller(BET)and Ultraviolet-Visible Spectroscopy(UV-vis),the obvious and fast response can be attributed to the mesoporous hollow nanosphere structure and appropriate band gap of SnO_2 hollow nanosphere. 展开更多
关键词 SnO_(2)nanomaterials Hollow nanostructures Hydrothermal methods Acephate gas sensor High-efficiency detection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部