期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
MYB41,MYB107,and MYC2 promote ABA-mediated primary fatty alcohol accumulation via activation of AchnFAR in wound suberization in kiwifruit 被引量:1
1
作者 xiaopeng wei Linchun Mao +2 位作者 Xiaobo wei Ming Xia Changjie Xu 《Horticulture Research》 SCIE 2020年第1期1666-1675,共10页
Wound damage triggers the accumulation of abscisic acid(ABA),which induces the expression of a large number of genes involved in wound suberization in plants.Fatty acyl-CoA reductase(FAR)catalyzes the generation of pr... Wound damage triggers the accumulation of abscisic acid(ABA),which induces the expression of a large number of genes involved in wound suberization in plants.Fatty acyl-CoA reductase(FAR)catalyzes the generation of primary fatty alcohols by the reduction of fatty acids in suberin biosynthesis.However,the regulatory effects of transcription factors(TFs)on AchnFAR in response to ABA are unexplored.In this study,kiwifruit AchnFAR displayed a biological function analogous to that of FAR in transiently overexpressed tobacco(Nicotiana benthamiana)leaves.The positive role of TFs,including AchnMYB41,AchnMYB107,and AchnMYC2,in the regulation of AchnFAR was identified.The three TFs could individually bind to the AchnFAR promoter to activate gene transcription in yeast one-hybrid and dualluciferase assays.Transient overexpression of TFs in tobacco leaves resulted in the upregulation of aliphatic synthesis genes(including FAR)and the increase in aliphatics,including primary alcohols,α,ω-diacids,ω-hydroxyacids,and fatty acids.Moreover,exogenous ABA treatment elevated TF-mediated AchnFAR expression and the accumulation of primary alcohols.Conversely,fluridone,an inhibitor of ABA biosynthesis,suppressed the expression of AchnFAR and TF genes and reduced the formation of primary alcohols.The results indicate that AchnMYB41,AchnMYB107,and AchnMYC2 activate AchnFAR transcription to promote ABA-mediated primary alcohol formation in wound suberization in kiwifruit. 展开更多
关键词 WOUND mediated ELEVATED
下载PDF
STTG-net:a Spatio-temporal network for human motion prediction based on transformer and graph convolution network
2
作者 Lujing Chen Rui Liu +3 位作者 Xin Yang Dongsheng Zhou Qiang Zhang xiaopeng wei 《Visual Computing for Industry,Biomedicine,and Art》 EI 2022年第1期224-238,共15页
In recent years,human motion prediction has become an active research topic in computer vision.However,owing to the complexity and stochastic nature of human motion,it remains a challenging problem.In previous works,h... In recent years,human motion prediction has become an active research topic in computer vision.However,owing to the complexity and stochastic nature of human motion,it remains a challenging problem.In previous works,human motion prediction has always been treated as a typical inter-sequence problem,and most works have aimed to capture the temporal dependence between successive frames.However,although these approaches focused on the effects of the temporal dimension,they rarely considered the correlation between different joints in space.Thus,the spatio-temporal coupling of human joints is considered,to propose a novel spatio-temporal network based on a transformer and a gragh convolutional network(GCN)(STTG-Net).The temporal transformer is used to capture the global temporal dependencies,and the spatial GCN module is used to establish local spatial correlations between the joints for each frame.To overcome the problems of error accumulation and discontinuity in the motion prediction,a revision method based on fusion strategy is also proposed,in which the current prediction frame is fused with the previous frame.The experimental results show that the proposed prediction method has less prediction error and the prediction motion is smoother than previous prediction methods.The effectiveness of the proposed method is also demonstrated comparing it with the state-of-the-art method on the Human3.6 M dataset. 展开更多
关键词 Human motion prediction TRANSFORMER Gragh convolutional network
下载PDF
分心感知的伪装物体分割
3
作者 梅海洋 杨鑫 +3 位作者 周运铎 季葛鹏 魏小鹏 范登平 《中国科学:信息科学》 CSCD 北大核心 2024年第3期653-673,共21页
本文致力于设计一个有效且高效的伪装物体分割(camouflaged object segmentation, COS)模型.为此,本文开发了一个生物启发的框架,称为金字塔定位和聚焦网络(pyramid positioning and focus network, PFNet+),其模仿了自然界中的捕食过程... 本文致力于设计一个有效且高效的伪装物体分割(camouflaged object segmentation, COS)模型.为此,本文开发了一个生物启发的框架,称为金字塔定位和聚焦网络(pyramid positioning and focus network, PFNet+),其模仿了自然界中的捕食过程.具体地,本文的PFNet+包含3个关键模块,即上下文增强模块(context enrichment, CEn)、金字塔定位模块(pyramid positioning module, PPM)和聚焦模块(focus module, FM). CEn通过整合上下文信息来增强骨干特征的表征能力,从而提供更有辨别性的骨干特征. PPM模仿捕食中的检测过程,以金字塔的方式从全局的角度定位潜在的目标物体.然后FM执行捕食中的识别过程,通过在歧义区域的聚焦逐步细化初始的预测结果.值得注意的是,在FM中,本文开发了一个新颖的分心挖掘策略,用于分心区域的发现和去除,以提高预测的性能.大量的实验证明本文的PFNet+能够实时运行(56 fps),在4个标准度量指标下, PFNet+在3个具有挑战性的数据集上都显著优于现有的20个最新模型,在其他视觉任务(如息肉分割)上的实验进一步证明了PFNet+的泛化能力. 展开更多
关键词 伪装物体 分心 上下文增强 上下文探索 金字塔 分割
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部