Wound damage triggers the accumulation of abscisic acid(ABA),which induces the expression of a large number of genes involved in wound suberization in plants.Fatty acyl-CoA reductase(FAR)catalyzes the generation of pr...Wound damage triggers the accumulation of abscisic acid(ABA),which induces the expression of a large number of genes involved in wound suberization in plants.Fatty acyl-CoA reductase(FAR)catalyzes the generation of primary fatty alcohols by the reduction of fatty acids in suberin biosynthesis.However,the regulatory effects of transcription factors(TFs)on AchnFAR in response to ABA are unexplored.In this study,kiwifruit AchnFAR displayed a biological function analogous to that of FAR in transiently overexpressed tobacco(Nicotiana benthamiana)leaves.The positive role of TFs,including AchnMYB41,AchnMYB107,and AchnMYC2,in the regulation of AchnFAR was identified.The three TFs could individually bind to the AchnFAR promoter to activate gene transcription in yeast one-hybrid and dualluciferase assays.Transient overexpression of TFs in tobacco leaves resulted in the upregulation of aliphatic synthesis genes(including FAR)and the increase in aliphatics,including primary alcohols,α,ω-diacids,ω-hydroxyacids,and fatty acids.Moreover,exogenous ABA treatment elevated TF-mediated AchnFAR expression and the accumulation of primary alcohols.Conversely,fluridone,an inhibitor of ABA biosynthesis,suppressed the expression of AchnFAR and TF genes and reduced the formation of primary alcohols.The results indicate that AchnMYB41,AchnMYB107,and AchnMYC2 activate AchnFAR transcription to promote ABA-mediated primary alcohol formation in wound suberization in kiwifruit.展开更多
In recent years,human motion prediction has become an active research topic in computer vision.However,owing to the complexity and stochastic nature of human motion,it remains a challenging problem.In previous works,h...In recent years,human motion prediction has become an active research topic in computer vision.However,owing to the complexity and stochastic nature of human motion,it remains a challenging problem.In previous works,human motion prediction has always been treated as a typical inter-sequence problem,and most works have aimed to capture the temporal dependence between successive frames.However,although these approaches focused on the effects of the temporal dimension,they rarely considered the correlation between different joints in space.Thus,the spatio-temporal coupling of human joints is considered,to propose a novel spatio-temporal network based on a transformer and a gragh convolutional network(GCN)(STTG-Net).The temporal transformer is used to capture the global temporal dependencies,and the spatial GCN module is used to establish local spatial correlations between the joints for each frame.To overcome the problems of error accumulation and discontinuity in the motion prediction,a revision method based on fusion strategy is also proposed,in which the current prediction frame is fused with the previous frame.The experimental results show that the proposed prediction method has less prediction error and the prediction motion is smoother than previous prediction methods.The effectiveness of the proposed method is also demonstrated comparing it with the state-of-the-art method on the Human3.6 M dataset.展开更多
基金supported by the National Natural Science Foundation of China(Nos.31772365 and 31972468)the National Key Research and Development Program of China(No.2018YFD0401303).
文摘Wound damage triggers the accumulation of abscisic acid(ABA),which induces the expression of a large number of genes involved in wound suberization in plants.Fatty acyl-CoA reductase(FAR)catalyzes the generation of primary fatty alcohols by the reduction of fatty acids in suberin biosynthesis.However,the regulatory effects of transcription factors(TFs)on AchnFAR in response to ABA are unexplored.In this study,kiwifruit AchnFAR displayed a biological function analogous to that of FAR in transiently overexpressed tobacco(Nicotiana benthamiana)leaves.The positive role of TFs,including AchnMYB41,AchnMYB107,and AchnMYC2,in the regulation of AchnFAR was identified.The three TFs could individually bind to the AchnFAR promoter to activate gene transcription in yeast one-hybrid and dualluciferase assays.Transient overexpression of TFs in tobacco leaves resulted in the upregulation of aliphatic synthesis genes(including FAR)and the increase in aliphatics,including primary alcohols,α,ω-diacids,ω-hydroxyacids,and fatty acids.Moreover,exogenous ABA treatment elevated TF-mediated AchnFAR expression and the accumulation of primary alcohols.Conversely,fluridone,an inhibitor of ABA biosynthesis,suppressed the expression of AchnFAR and TF genes and reduced the formation of primary alcohols.The results indicate that AchnMYB41,AchnMYB107,and AchnMYC2 activate AchnFAR transcription to promote ABA-mediated primary alcohol formation in wound suberization in kiwifruit.
基金This work was supported in part by the Key Program of NSFC(Grant No.U1908214)Program for Innovative Research Team in University of Liaoning Province(LT2020015)+1 种基金the Support Plan for Key Field Innovation Team of Dalian(2021RT06)the Science and Technology Innovation Fund of Dalian(Grant No.2020JJ25CY001).
文摘In recent years,human motion prediction has become an active research topic in computer vision.However,owing to the complexity and stochastic nature of human motion,it remains a challenging problem.In previous works,human motion prediction has always been treated as a typical inter-sequence problem,and most works have aimed to capture the temporal dependence between successive frames.However,although these approaches focused on the effects of the temporal dimension,they rarely considered the correlation between different joints in space.Thus,the spatio-temporal coupling of human joints is considered,to propose a novel spatio-temporal network based on a transformer and a gragh convolutional network(GCN)(STTG-Net).The temporal transformer is used to capture the global temporal dependencies,and the spatial GCN module is used to establish local spatial correlations between the joints for each frame.To overcome the problems of error accumulation and discontinuity in the motion prediction,a revision method based on fusion strategy is also proposed,in which the current prediction frame is fused with the previous frame.The experimental results show that the proposed prediction method has less prediction error and the prediction motion is smoother than previous prediction methods.The effectiveness of the proposed method is also demonstrated comparing it with the state-of-the-art method on the Human3.6 M dataset.