期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of Manganese on the Antioxidant System and Related Gene Expression Levels in the “Hong Yang” Kiwifruit Seedlings
1
作者 Chongpei Zheng Liangliang Li +2 位作者 Zhencheng Han Weijie Li xiaopeng wen 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第8期2399-2412,共14页
To explore how manganese affects the antioxidant system and the expression levels of related genes of“Hong yang”seedlings,the leaves of its tissue cultured seedlings were taken as test materials,and single factor tr... To explore how manganese affects the antioxidant system and the expression levels of related genes of“Hong yang”seedlings,the leaves of its tissue cultured seedlings were taken as test materials,and single factor treatment was performed by changing the manganese chloride(MnCl_(2)·4H_(2)O)solution concentration when spraying the leaves.The expression levels of Mn-SOD,POD64 and POD27 genes in leaves were quantitatively analyzed by real-time quantitative PCR(qRT-PCR)at different determination times.Meanwhile,the contents of malondial-dehyde(MDA),hydrogen peroxide(H_(2)O_(2)),the activities of antioxidant enzymes,including catalase(CAT),peroxidase(POD),and superoxide dismutase(SOD).The results showed that the SOD,CAT,POD,ascorbate peroxidase(APX),and reduced glutathione(GSH)activities in leaves were the highest at 12 h post-treatment with 50μM MnCl_(2)·4H_(2)O.Furthermore,the contents of MDA and H_(2)O_(2) in leaves also peaked when the concentration of H_(2)O_(2) is 50μM,which is the minimum value.Additionally at 50μM Mn^(2+),the Mn-SOD and POD27 expression was up-regulated as compared to the control,which promoted the expression of their respective enzyme activities.However,POD64 expression increased with the increasing Mn^(2+) concentration.Therefore,50μM is the optimal concentration of Mn when exogenously applied on“Hong yang”,which improve the antioxidant enzyme activity and regulate the plant’s physiological and biochemical functions. 展开更多
关键词 “Hong yang”seedlings MANGANESE antioxidant system related gene expression
下载PDF
Transcriptome-wide identification and expression profiling of Pinus massoniana MYB transcription factors responding to phosphorus deficiency 被引量:4
2
作者 Fuhua Fan Qingzhu Wang +1 位作者 xiaopeng wen Guijie Ding 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第3期909-919,共11页
Myeloblastosis(MYB) proteins constitute one of the largest transcription factor(TF) families in plants and play crucial roles in regulating plant physiological and biochemical processes, including adaptation to divers... Myeloblastosis(MYB) proteins constitute one of the largest transcription factor(TF) families in plants and play crucial roles in regulating plant physiological and biochemical processes, including adaptation to diverse abiotic stresses. These TF families contain highly conserved MYB repeats(1 R, R2 R3, 3 R and 4 R) at the N-terminus. Roles for MYB TFs have been reported in response to such stresses as dehydration, salt, cold, and drought. The characterization of Masson pine(Pinus massoniana) MYB TFs are reported, including the analysis of MYB TFs expression in seedlings under controlled conditions and two different phosphate(Pi) deficient treatments. By searching for conserved MYB motifs in full transcriptomic RNA sequencing data for P. massoniana, 59 sequences were identified as MYB TFs. Conserved domainstructures and comparative functional and phylogenetic relationships of these MYB TFs with those in Arabidopsis were assessed using various bioinformatics tools. Based on microarray analysis, P. massoniana MYB genes exhibited different expression patterns under the two Pi deficiency conditions. Genes encoding MYB TFs that showed increased expression under critical Pi deficiency were identified, and some MYBs were differentially expressed only under conditions of severe Pi starvation. These results are useful for the functional characterization of MYB TFs that may be involved in the response to Pi deficiency and play divergent roles in plants. 展开更多
关键词 MYB TRANSCRIPTION factors TRANSCRIPTOME PINUS massoniana Phosphorus DEFICIENCY MICROARRAY analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部