Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter....Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.展开更多
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat...This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.展开更多
Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge ...Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge collection narrowing mechanism assisted by free exciton radiative recombination is proposed,which well reveals the characteristic spectral response of diamond.展开更多
The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centraliz...The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times.展开更多
The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyze...The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.展开更多
To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)usi...To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)using first principles calculation combined with the climbing image nudged elastic band method.We find the band gap of the monolayer MoS_(2) is reduced significantly by the noble metal doping,which is unfavorable to improving its photocatalytic performance.The optical absorption coefficient shows that the doping does not increase the ability of the monolayer MoS_(2) to absorb visible light.The monolayer MoS_(2) doped with the noble metal is not a potential photocatalyst for the hydrogen evolution reaction because the band edge position of the conduction band minimum is lower than-4.44 eV,the reduction potential of H^(+)/H_(2).Fortunately,the band gap reduction increases the electron transport performance of the monolayer MoS_(2),and the activation energy of water splitting is greatly reduced by the noble metal doping,especially the Pt doping.On the whole,noble metal doping can enhance the electrocatalytic performance of the monolayer MoS_(2).展开更多
Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumptio...Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.展开更多
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop...The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.展开更多
To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),...To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.展开更多
As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by...As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by such robots is vital for their control.This information is the basis for motion planning in assistive and collaborative functions.Here,a wearable gait recognition sensor system for exoskeleton robots is presented.Pressure sensor arrays based on laser-induced graphene are developed with flexibility and reliability.Multiple sensor units are integrated into an insole to detect real-time pressure at key plantar positions.In addition,the circuit hardware and the algorithm are designed to reinforce the sensor system with the capability of gait recognition.The experimental results show that the accuracy of gait recognition by the proposed system is 99.85%,and the effectiveness of the system is further verified through testing on an exoskeleton robot.展开更多
Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction en...Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction enables the magnetic systems to overcome limitations associated with size-dependent magnetic behavior within nano scale,thereby improving their magnetic properties and providing for superior performance in biomedical applications compared with single-phase magnetic materials.Understanding the underlying mechanism of exchange coupling and its impact on macroscopic magnetic properties is crucial for the design and application of such magnetic materials.This review provides an overview of recent advances in interfacial exchange coupling among different magnetic modalities-ferromagnetism,ferrimagnetism,and antiferromagnetism-based on core-shell magnetic nanoparticles(MNPs).Additionally,this review discusses micromagnetic simulations to gain insights into the relationship between the microscopic magnetic structure(size,shape,composition,and exchange coupling)and the resulting macroscopic properties.The controlled synthesis of MNPs is summarized,including one-step method and two-step method.The precise manipulation of interfacial characteristics is of great importance,albeit challenging,as it allows for the finetuning of magnetic properties tailored for specific applications.The review also explores potential applications of coreshell MNPs in magnetic resonance imaging,hyperthermia therapy,targeted drug delivery,and advanced neuromodulation.展开更多
Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite ta...Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge.展开更多
Semiconductor-based neutron-detectors are characterized by small size, high energy-resolution, good spatial resolution, and stable response(at the depletion voltage). Consequently, these neutron-detectors are importan...Semiconductor-based neutron-detectors are characterized by small size, high energy-resolution, good spatial resolution, and stable response(at the depletion voltage). Consequently, these neutron-detectors are important for the fields of nuclear proliferation prevention, oil exploration, monitoring neutron-scattering experiments, cancer treatments, and space radiation effect research. However, there are some well-known problems for conventional silicon-based neutron detectors: low neutron-detection efficiency and limited resistance to radiation. Therefore, critical improvements are needed to enable sufficiently effective and practical neutron detection. To address these problems, direct-conversion neutron detectors as well as wide bandgap semiconductor-based detectors have been developed and studied intensely during the past years. Significant progress with respect to detection efficiency, radiation resistance, and room temperature operation was achieved. This paper reviews the latest research highlights, remaining challenges, and emerging technologies of direct-conversion neutron detectors as well as wide-bandgap semiconductor neutron detectors. This compact review serves as a reference for researchers interested in the design and development of improved neutron detectors in the future.展开更多
Two-dimensional(2D)layered materials have many potential applications in memristors owing to their unique atomic structures and electronic properties.Memristors can overcome the in-memory bottleneck for use in brain-l...Two-dimensional(2D)layered materials have many potential applications in memristors owing to their unique atomic structures and electronic properties.Memristors can overcome the in-memory bottleneck for use in brain-like neuromorphic computing.However,exploiting additional lateral memtransistors based on 2D layered materials remains challenging.There are few studies on p-type semiconductors that have not been theoretically analyzed.In this study,a lateral memtransistor based on p-type GeSe nanosheets is investigated.A threeterminal GeSe memtransistor that modulated the interfacial barrier height was fabricated using low-energy ion irradiation;the memtransistor exhibited a low operating voltage.The memtransistor successfully mimics biological synapse,including neuroplasticity functions,such as short-term plasticity,long-term plasticity,paired-pulse facilitation,and spike-timing-dependent plasticity.The mechanism of interfacial modulation was verified by experimental results and theoretical calculations.The results show that it is feasible to modulate the interface of 2D GeSe nanosheets using low-energy ion irradiation to realize a lateral memtransistor.This may provide promising opportunities for artificial neuromorphic system applications based on 2D layered materials.展开更多
In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binu...In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binuclear MnFeN8 structure was verified experimentally and theoretically.Magnetic measurements and Gaussian calculations reveal that this unique Mn-Fe BNSs exhibit strong short-range electronic interaction between Mn and Fe sites,which decouples two paired d electrons in Fe sites,thereby transforming Fe sites from an intermediate to a high spin state.The optimal electronic configuration of Fe sites and their binuclear structure facilitate an oxygen reduction reaction(ORR)thermodynamically and dynamically,respectively,endowing Mn-Fe BNSs with improved ORR performance.展开更多
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p...Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.展开更多
Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells m...Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells may be a potential strategy for cancer therapy.Therefore,ferroptosis-inducing drugs are attracting more attention for cancer treatment.Here,we showed that erianin,a natural product isolated from Dendrobium chrysotoxum Lindl,exerted its anticancer activity by inducing cell death and inhibiting cell migration in lung cancer cells.Subsequently,we demonstrated for the first time that erianin induced ferroptotic cell death in lung cancer cells,which was accompanied by ROS accumulation,lipid peroxidation,and GSH depletion.The ferroptosis inhibitors Fer-1 and Lip-1 but not Z-VAD-FMK,CQ,or necrostatin-1 rescued erianin-induced cell death,indicating that ferroptosis contributed to erianin-induced cell death.Furthermore,we demonstrated that Ca^(2+)/CaM signaling was a critical mediator of erianin-induced ferroptosis and that blockade of this signaling significantly rescued cell death induced by erianin treatment by suppressing ferroptosis.Taken together,our data suggest that the natural product erianin exerts its anticancer effects by inducing Ca^(2+)/CaMdependent ferroptosis and inhibiting cell migration,and erianin will hopefully serve as a prospective compound for lung cancer treatment.展开更多
In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG...In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade(SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion(ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.展开更多
基金the financial support from the National Natural Science Foundation of China(grant numbers 11922507,12050005,52002140)Fundamental Research Funds for the Central Universities(2020kfyXJJS008)+1 种基金Major State Basic Research Development Program of China(2021YFB3201000)Young Elite Scientists Sponsorship Program by CAST
文摘Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
基金funded by the National Key Research and Development Program of China(no.2020YFC1909604)Shenzhen Key Projects of Technological Research(JSGG20200925145800001)Shenzhen Basic Research Project(no.JCYJ20190808145203535).
文摘This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries.
文摘Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge collection narrowing mechanism assisted by free exciton radiative recombination is proposed,which well reveals the characteristic spectral response of diamond.
基金Supported by Nati onal Key R&D Program of China(Grant No.2018YFB1305400,2018YFB1305402)National Natural Science Foundation of China(Grant No.518902883)Fun dame ntal Resea rch Funds for the Central Universities(Grant No.2018XZZX001-04).
文摘The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times.
基金funded by National Natural Science Foundation of China(Project No.51701172)Foundation of China Railway Eryuan Engineering Group Co.Ltd.(Project No.KYY2020035(21-21))+1 种基金Natural Science Foundation of Hunan Province(Project No.2018JJ3504)China Postdoctoral Science Foundation(Project No.2018M632977).
文摘The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening.
基金the Joint Funds of the National Natural Science Foundation of China(Grant No.U1967212)the National Science and Technology Major Project of China(Grant No.2019XS06004009)the Fundamental Research Funds for the Central Universities(Grant No.2018ZD10).
文摘To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)using first principles calculation combined with the climbing image nudged elastic band method.We find the band gap of the monolayer MoS_(2) is reduced significantly by the noble metal doping,which is unfavorable to improving its photocatalytic performance.The optical absorption coefficient shows that the doping does not increase the ability of the monolayer MoS_(2) to absorb visible light.The monolayer MoS_(2) doped with the noble metal is not a potential photocatalyst for the hydrogen evolution reaction because the band edge position of the conduction band minimum is lower than-4.44 eV,the reduction potential of H^(+)/H_(2).Fortunately,the band gap reduction increases the electron transport performance of the monolayer MoS_(2),and the activation energy of water splitting is greatly reduced by the noble metal doping,especially the Pt doping.On the whole,noble metal doping can enhance the electrocatalytic performance of the monolayer MoS_(2).
基金the National Key Research and Development Program of China(No.2016YFE0133200)National Natural Science Foundation of China(No.52172037)+4 种基金European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(No.734578)Post-doctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2021 BH006)Beijing Municipal Natural Science Foundation(Nos.2212036 and 4192038)Science and Technology Innovation Special Project of Foshan Government(Nos.BK20BE021 and BK21BE004)Special thanks to the nation-al high-level-university sponsored graduate program of China Scholarship Council(CSC),USTB-Monte Biance Joint R&D Center and joint-postdoc research program of Shunde Graduate School of USTB.
文摘Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.
基金the National Key Research and Development Program of China (No. 2020YFC1909604)the Shenzhen Key Projects of Technological Research (JSGG2020092514 5800001)。
文摘The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively.
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1967212)the National Science and Technology Major Project of China(Grant No.2019XS06004009)the Fundamental Research Funds for the Central Universities(Grant No.2018ZD10).
文摘To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.
基金supported by the STI 2030—Major Projects(2022ZD0208601)the National Natural Science Foundation of China(52305077,52105593)+1 种基金the Zhejiang Provincial Natural Science Foundation of China(LDQ24E050001)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(2023C01051,2023C03007).
文摘As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by such robots is vital for their control.This information is the basis for motion planning in assistive and collaborative functions.Here,a wearable gait recognition sensor system for exoskeleton robots is presented.Pressure sensor arrays based on laser-induced graphene are developed with flexibility and reliability.Multiple sensor units are integrated into an insole to detect real-time pressure at key plantar positions.In addition,the circuit hardware and the algorithm are designed to reinforce the sensor system with the capability of gait recognition.The experimental results show that the accuracy of gait recognition by the proposed system is 99.85%,and the effectiveness of the system is further verified through testing on an exoskeleton robot.
基金supported by the Fundamental Research Funds for the Central Universities(226-2022-00208)the National Natural Science Foundation of China(52373230)+1 种基金the State Key Laboratory of Clean Energy Utilization(109203*A62303/022)the Magnetic DNA Origami:Design,Construction,and Biomedical Application of Nanorobots(209209-J32301ZJ).
文摘Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction enables the magnetic systems to overcome limitations associated with size-dependent magnetic behavior within nano scale,thereby improving their magnetic properties and providing for superior performance in biomedical applications compared with single-phase magnetic materials.Understanding the underlying mechanism of exchange coupling and its impact on macroscopic magnetic properties is crucial for the design and application of such magnetic materials.This review provides an overview of recent advances in interfacial exchange coupling among different magnetic modalities-ferromagnetism,ferrimagnetism,and antiferromagnetism-based on core-shell magnetic nanoparticles(MNPs).Additionally,this review discusses micromagnetic simulations to gain insights into the relationship between the microscopic magnetic structure(size,shape,composition,and exchange coupling)and the resulting macroscopic properties.The controlled synthesis of MNPs is summarized,including one-step method and two-step method.The precise manipulation of interfacial characteristics is of great importance,albeit challenging,as it allows for the finetuning of magnetic properties tailored for specific applications.The review also explores potential applications of coreshell MNPs in magnetic resonance imaging,hyperthermia therapy,targeted drug delivery,and advanced neuromodulation.
基金the financial support of National Key Research and Development Program of China(No.2020YFC1909604)National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248)+1 种基金Shenzhen Key Projects of Technological Research(No.JSGG20200925145800001)and Shenzhen Basic Research Project(Nos.JCYJ20190808145203535,JCYJ20190808163005631)for providing financial support for this work.We are also grateful to the Instrumental Analysis Center of Shenzhen University(Xili Campus)for providing the facilities for our material analyzes。
文摘Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11922507, and 12050005)Major State Basic Research Development Program of China (Grant No. 2021YFB3201000)Fundamental Research Funds for the Central Universities (Grant No.2021NTST14)。
文摘Semiconductor-based neutron-detectors are characterized by small size, high energy-resolution, good spatial resolution, and stable response(at the depletion voltage). Consequently, these neutron-detectors are important for the fields of nuclear proliferation prevention, oil exploration, monitoring neutron-scattering experiments, cancer treatments, and space radiation effect research. However, there are some well-known problems for conventional silicon-based neutron detectors: low neutron-detection efficiency and limited resistance to radiation. Therefore, critical improvements are needed to enable sufficiently effective and practical neutron detection. To address these problems, direct-conversion neutron detectors as well as wide bandgap semiconductor-based detectors have been developed and studied intensely during the past years. Significant progress with respect to detection efficiency, radiation resistance, and room temperature operation was achieved. This paper reviews the latest research highlights, remaining challenges, and emerging technologies of direct-conversion neutron detectors as well as wide-bandgap semiconductor neutron detectors. This compact review serves as a reference for researchers interested in the design and development of improved neutron detectors in the future.
基金National Natural Science Foundation of China,Grant/Award Numbers:12275198,12074293,12025503Fundamental Research Funds for the Center Universities,Grant/Award Numbers:2042023kf0196,2042022kf1181。
文摘Two-dimensional(2D)layered materials have many potential applications in memristors owing to their unique atomic structures and electronic properties.Memristors can overcome the in-memory bottleneck for use in brain-like neuromorphic computing.However,exploiting additional lateral memtransistors based on 2D layered materials remains challenging.There are few studies on p-type semiconductors that have not been theoretically analyzed.In this study,a lateral memtransistor based on p-type GeSe nanosheets is investigated.A threeterminal GeSe memtransistor that modulated the interfacial barrier height was fabricated using low-energy ion irradiation;the memtransistor exhibited a low operating voltage.The memtransistor successfully mimics biological synapse,including neuroplasticity functions,such as short-term plasticity,long-term plasticity,paired-pulse facilitation,and spike-timing-dependent plasticity.The mechanism of interfacial modulation was verified by experimental results and theoretical calculations.The results show that it is feasible to modulate the interface of 2D GeSe nanosheets using low-energy ion irradiation to realize a lateral memtransistor.This may provide promising opportunities for artificial neuromorphic system applications based on 2D layered materials.
基金financially supported by the National Natural Science Foundation of China(11921006)the National Key Research and Development Program of China(2020YFC1909604)+1 种基金Shenzhen Key Projects of Technological Research(JSGG20200925145800001)Shenzhen Science and Technology Program(CJGJZD20210408092801005)。
基金support of Shenzhen Basic Research Project(Nos.JCYJ20170818092720054,JCYJ20190808145203535,and JCYJ20190808144413257)National Natural Science Foundation of China(No.21671136)+3 种基金Postdoctoral Science Foundation of China(No.2019M663085)Major Programs for Science and Technology Development of Shenzhen(Nos.JSGG20160328151657828 and XCL201110060)Major Industrial Projects of Shenzhen(No.s2017001850011)the Project of Natural Science Foundation of Guangdong Province(Nos.2020A1515010380 and 2014A030311028).
文摘In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binuclear MnFeN8 structure was verified experimentally and theoretically.Magnetic measurements and Gaussian calculations reveal that this unique Mn-Fe BNSs exhibit strong short-range electronic interaction between Mn and Fe sites,which decouples two paired d electrons in Fe sites,thereby transforming Fe sites from an intermediate to a high spin state.The optimal electronic configuration of Fe sites and their binuclear structure facilitate an oxygen reduction reaction(ORR)thermodynamically and dynamically,respectively,endowing Mn-Fe BNSs with improved ORR performance.
基金financial support by National Natural Science Foundation(NNSF)of China(Nos.52202269,52002248,U23B2069,22309162)Shenzhen Science and Technology program(No.20220810155330003)+1 种基金Shenzhen Basic Research Project(No.JCYJ20190808163005631)Xiangjiang Lab(22XJ01007).
文摘Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes.
基金supported by grants from the National Natural Science Foundation of China(grant Nos.81672932,81730108,81874380,and 81973635)the Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(grant No.LR18H160001)+1 种基金the Zhejiang Province Science and Technology Project of TCM(grant No.2019ZZ016)the Open Project Program of the Jiangsu Key Laboratory of Pharmacology and Safety Evaluation of Chinese Materia Medica(No.JKLPSE201807).
文摘Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells may be a potential strategy for cancer therapy.Therefore,ferroptosis-inducing drugs are attracting more attention for cancer treatment.Here,we showed that erianin,a natural product isolated from Dendrobium chrysotoxum Lindl,exerted its anticancer activity by inducing cell death and inhibiting cell migration in lung cancer cells.Subsequently,we demonstrated for the first time that erianin induced ferroptotic cell death in lung cancer cells,which was accompanied by ROS accumulation,lipid peroxidation,and GSH depletion.The ferroptosis inhibitors Fer-1 and Lip-1 but not Z-VAD-FMK,CQ,or necrostatin-1 rescued erianin-induced cell death,indicating that ferroptosis contributed to erianin-induced cell death.Furthermore,we demonstrated that Ca^(2+)/CaM signaling was a critical mediator of erianin-induced ferroptosis and that blockade of this signaling significantly rescued cell death induced by erianin treatment by suppressing ferroptosis.Taken together,our data suggest that the natural product erianin exerts its anticancer effects by inducing Ca^(2+)/CaMdependent ferroptosis and inhibiting cell migration,and erianin will hopefully serve as a prospective compound for lung cancer treatment.
基金supported by International Partnership Program of Chinese Academy of Sciences(No.181231KYSB20170022)the Key Projects of International Cooperation in Chinese Academy of Sciences
文摘In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade(SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion(ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented.