期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
High Efficiency Formamidinium-Cesium Perovskite-Based Radio-Photovoltaic Cells
1
作者 Runlong Gao Rui Chen +10 位作者 Pengying Wan Xiao ouyang Qiantao Lei Qi Deng Xinyu Guan Guangda Niu Jiang Tang Wei Chen Zonghao Liu xiaoping ouyang Linyue Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期160-167,共8页
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.... Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells. 展开更多
关键词 formamidinium-cesium perovskite PHOSPHOR photovoltaic converter power conversion efficiency radio-photovoltaic cell
下载PDF
Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery
2
作者 Xue Ye Jianneng Liang +6 位作者 Baorong Du Yongliang Li Xiangzhong Ren Dazhuan Wu xiaoping ouyang Qianling Zhang Jianhong Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期50-59,共10页
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat... This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. 展开更多
关键词 in situ polymerization lithium anode polymer electrolyte solid-state lithium batteries
下载PDF
Charge collection narrowing mechanism in electronic-grade-diamond photodetectors
3
作者 xiaoping ouyang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第6期1-3,共3页
Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge ... Recently,an extreme narrowband spectral response of only 8 nm in electronic-grade diamond-based photodetectors has been observed by Zheng Wei and his colleagues from Sun Yat-sen University for the first time.A charge collection narrowing mechanism assisted by free exciton radiative recombination is proposed,which well reveals the characteristic spectral response of diamond. 展开更多
关键词 MECHANISM ELECTRONIC EXTREME
下载PDF
One Novel Hydraulic Actuating System for the Lower-Body Exoskeleton 被引量:5
4
作者 Maowen Sun xiaoping ouyang +2 位作者 Jouni Mattila Huayong Yang Gang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第1期20-29,共10页
The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centraliz... The hydraulic exoskeleton is one research hotspot in the field of robotics,which can take heavy load due to the high power density of the hydraulic system.However,the traditional hydraulic system is normally centralized,inefficient,and bulky during application,which limits its development in the exoskeleton.For improving the robot's performance,its hydraulic actuating system should be optimized further.In this paper a novel hydraulic actuating system(HAS)based on electric-hydrostatic actuator is proposed,which is applied to hip and knee joints.Each HAS integrates an electric servo motor,a high-speed micro pump,a specific tank,and other components into a module.The specific parameters are obtained through relevant simulation according to human motion data and load requirements.The dynamic models of the HAS are built,and validated by the system identification.Experiments of trajectory tracking and human-exoskeleton interaction are carried out,which demonstrate the proposed HAS has the ability to be applied to the exoskeleton.Compared with the previous prototype,the total weight of the HAS in the robot is reduced by about 40%,and the power density is increased by almost 1.6 times. 展开更多
关键词 Hydraulic actuating system(HAS) Lower-body exoskeletons Lightweight and integrated System identification Working mode test
下载PDF
Investigation on microstructures and mechanical properties of Mg-6Zn-0.5Ce-xMn(x=0 and 1)wrought magnesium alloys 被引量:4
5
作者 Caihong Hou Hongshuai Cao +5 位作者 Fugang Qi Qing Wang Lianhui Li Nie Zhao Dingfei Zhang xiaoping ouyang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第4期993-1003,共11页
The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyze... The microstructure evolution and mechanical properties of Mg–6Zn–0.5Ce–xMn(x=0 and 1 wt.%)wrought magnesium alloys were researched,and the morphologies and role of Mn element in the experimental alloys were analyzed.The research shows that all of Mn elements form theα-Mn pure phases,which do not participate in the formation of other phases,such as theτ-phases.The mechanical properties of Mn-containing alloys in as-extruded and aged states are superior to Mn-free alloys.During the hot extrusion process,the dispersed fineα-Mn particle phase hinders the migration of grain boundaries and inhibits dynamic recrystallization,which mainly takes effect of grain refining and dispersion hardening.During the aging treatments,the dispersed fineα-Mn particle phase not only hinders the growth of the solution-treated grains,but also becomes the nucleation cores ofβ1 rod-like precipitate phase,which is conducive to increasing the nucleation rate of the precipitate phase.For the aged alloy,the Mn addition mainly takes effect of grain refining and promoting aging strengthening. 展开更多
关键词 Mg–6Zn–0.5Ce alloy Microstructure evolution Mechanical property Mn element Aging precipitation
下载PDF
Electrocatalytic and photocatalytic performance of noble metal doped monolayer MoS2 in the hydrogen evolution reaction: A first principles study 被引量:4
6
作者 Zheng Zhang Kai Chen +2 位作者 Qiang Zhao Mei Huang xiaoping ouyang 《Nano Materials Science》 CAS CSCD 2021年第1期89-94,共6页
To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)usi... To maximize the catalytic performance of MoS_(2) in the hydrogen evolution reaction,we investigate the electrocatalytic and photocatalytic performance of monolayer MoS_(2) doped with noble metal(Ag,Au,Cu,Pd,and Pt)using first principles calculation combined with the climbing image nudged elastic band method.We find the band gap of the monolayer MoS_(2) is reduced significantly by the noble metal doping,which is unfavorable to improving its photocatalytic performance.The optical absorption coefficient shows that the doping does not increase the ability of the monolayer MoS_(2) to absorb visible light.The monolayer MoS_(2) doped with the noble metal is not a potential photocatalyst for the hydrogen evolution reaction because the band edge position of the conduction band minimum is lower than-4.44 eV,the reduction potential of H^(+)/H_(2).Fortunately,the band gap reduction increases the electron transport performance of the monolayer MoS_(2),and the activation energy of water splitting is greatly reduced by the noble metal doping,especially the Pt doping.On the whole,noble metal doping can enhance the electrocatalytic performance of the monolayer MoS_(2). 展开更多
关键词 ELECTROCATALYTIC Monolayer MoS2 Noble metal doping Hydrogen evolution reaction First principles calculation
下载PDF
Carbon materials:The burgeoning promise in electronics 被引量:2
7
作者 Yuting Zheng Junjun Wei +6 位作者 Jinlong Liu Liangxian Chen Kang An Xiaotong Zhang Haitao Ye xiaoping ouyang Chengming Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第3期404-423,共20页
Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumptio... Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials. 展开更多
关键词 carbon materials NANOTUBE GRAPHENE DIAMOND electronic devices
下载PDF
A cerium-doped NASICON chemically coupled poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries 被引量:1
8
作者 Tao Huang Wei Xiong +13 位作者 Xue Ye Zhencheng Huang Yuqing Feng Jianneng Liang Shenghua Ye Jishou Piao Xinzhong Wang Yongliang Li Xiangzhong Ren Chao Chen Shaoluan Huang xiaoping ouyang Qianling Zhang Jianhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期311-321,I0007,共12页
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop... The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively. 展开更多
关键词 Quasi-solid-state batteries Composite polymer electrolytes High conductivity High-voltage cathode Oxygen vacancies
下载PDF
Comparative adsorption of heavy metal ions in wastewater on monolayer molybdenum disulfide 被引量:1
9
作者 Zheng Zhang Kai Chen +2 位作者 Qiang Zhao Mei Huang xiaoping ouyang 《Green Energy & Environment》 SCIE CSCD 2021年第5期751-758,共8页
To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),... To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved. 展开更多
关键词 Monolayer MoS2 Heavy metal ions ADSORPTION WASTEWATER First-principles calculation
下载PDF
A laser-engraved wearable gait recognition sensor system for exoskeleton robots 被引量:2
10
作者 Maowen Sun Songya Cui +4 位作者 Zezheng Wang Huayu Luo Huayong Yang xiaoping ouyang Kaichen Xu 《Microsystems & Nanoengineering》 SCIE EI CSCD 2024年第2期269-277,共9页
As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by... As a reinforcement technology that improves load-bearing ability and prevents injuries,assisted exoskeleton robots have extensive applications in freight transport and health care.The perception of gait information by such robots is vital for their control.This information is the basis for motion planning in assistive and collaborative functions.Here,a wearable gait recognition sensor system for exoskeleton robots is presented.Pressure sensor arrays based on laser-induced graphene are developed with flexibility and reliability.Multiple sensor units are integrated into an insole to detect real-time pressure at key plantar positions.In addition,the circuit hardware and the algorithm are designed to reinforce the sensor system with the capability of gait recognition.The experimental results show that the accuracy of gait recognition by the proposed system is 99.85%,and the effectiveness of the system is further verified through testing on an exoskeleton robot. 展开更多
关键词 HARDWARE ROBOT SKELETON
原文传递
Providing insight into exchange coupling within nanomagnetism:mechanism,micromagnetic simulation,synthesis and biomedical application
11
作者 Yuting Tang Feng Feng +4 位作者 Guanhua Xu Shijie Qin xiaoping ouyang Li Yao Xiuyu Wang 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3049-3082,共34页
Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction en... Exchange coupling within nanomagnetism is a rapidly evolving field with significant implications for that plays a crucial role in the development of magnetic nanomaterials.Manipulating exchange coupling interaction enables the magnetic systems to overcome limitations associated with size-dependent magnetic behavior within nano scale,thereby improving their magnetic properties and providing for superior performance in biomedical applications compared with single-phase magnetic materials.Understanding the underlying mechanism of exchange coupling and its impact on macroscopic magnetic properties is crucial for the design and application of such magnetic materials.This review provides an overview of recent advances in interfacial exchange coupling among different magnetic modalities-ferromagnetism,ferrimagnetism,and antiferromagnetism-based on core-shell magnetic nanoparticles(MNPs).Additionally,this review discusses micromagnetic simulations to gain insights into the relationship between the microscopic magnetic structure(size,shape,composition,and exchange coupling)and the resulting macroscopic properties.The controlled synthesis of MNPs is summarized,including one-step method and two-step method.The precise manipulation of interfacial characteristics is of great importance,albeit challenging,as it allows for the finetuning of magnetic properties tailored for specific applications.The review also explores potential applications of coreshell MNPs in magnetic resonance imaging,hyperthermia therapy,targeted drug delivery,and advanced neuromodulation. 展开更多
关键词 nano magnetism heterogeneous interfaces exchange coupling micromagnetic simulation biomedical application
原文传递
Cost-effective natural graphite reengineering technology for lithium ion batteries
12
作者 Pei Liu Hongbin Wang +8 位作者 Tao Huang Liewu Li Wei Xiong Shaoluan Huang Xiangzhong Ren xiaoping ouyang Jiangtao Hu Qianling Zhang Jianhong Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期547-551,共5页
Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite ta... Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge. 展开更多
关键词 Natural graphite Reengineering technology Liquid-polyacrylonitrile Lithium ion batteries High performance
原文传递
Latest developments in room-temperature semiconductor neutron detectors: Prospects and challenges 被引量:2
13
作者 Linyue Liu Xiao ouyang +2 位作者 Runlong Gao Pengying Wan xiaoping ouyang 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第3期11-31,共21页
Semiconductor-based neutron-detectors are characterized by small size, high energy-resolution, good spatial resolution, and stable response(at the depletion voltage). Consequently, these neutron-detectors are importan... Semiconductor-based neutron-detectors are characterized by small size, high energy-resolution, good spatial resolution, and stable response(at the depletion voltage). Consequently, these neutron-detectors are important for the fields of nuclear proliferation prevention, oil exploration, monitoring neutron-scattering experiments, cancer treatments, and space radiation effect research. However, there are some well-known problems for conventional silicon-based neutron detectors: low neutron-detection efficiency and limited resistance to radiation. Therefore, critical improvements are needed to enable sufficiently effective and practical neutron detection. To address these problems, direct-conversion neutron detectors as well as wide bandgap semiconductor-based detectors have been developed and studied intensely during the past years. Significant progress with respect to detection efficiency, radiation resistance, and room temperature operation was achieved. This paper reviews the latest research highlights, remaining challenges, and emerging technologies of direct-conversion neutron detectors as well as wide-bandgap semiconductor neutron detectors. This compact review serves as a reference for researchers interested in the design and development of improved neutron detectors in the future. 展开更多
关键词 fusion reaction neutron convertor neutron detectors wide bandgap semiconductor detection efficiency radiation resistance
原文传递
Low operating voltage memtransistors based on ion bombarded p-type GeSe nanosheets for artificial synapse applications 被引量:1
14
作者 Jing Wang Dong He +8 位作者 Rui Chen Hang Xu Hongbo Wang Menghua Yang Qi Zhang Changzhong Jiang Wenqing Li xiaoping ouyang Xiangheng Xiao 《InfoMat》 SCIE CSCD 2023年第12期54-64,共11页
Two-dimensional(2D)layered materials have many potential applications in memristors owing to their unique atomic structures and electronic properties.Memristors can overcome the in-memory bottleneck for use in brain-l... Two-dimensional(2D)layered materials have many potential applications in memristors owing to their unique atomic structures and electronic properties.Memristors can overcome the in-memory bottleneck for use in brain-like neuromorphic computing.However,exploiting additional lateral memtransistors based on 2D layered materials remains challenging.There are few studies on p-type semiconductors that have not been theoretically analyzed.In this study,a lateral memtransistor based on p-type GeSe nanosheets is investigated.A threeterminal GeSe memtransistor that modulated the interfacial barrier height was fabricated using low-energy ion irradiation;the memtransistor exhibited a low operating voltage.The memtransistor successfully mimics biological synapse,including neuroplasticity functions,such as short-term plasticity,long-term plasticity,paired-pulse facilitation,and spike-timing-dependent plasticity.The mechanism of interfacial modulation was verified by experimental results and theoretical calculations.The results show that it is feasible to modulate the interface of 2D GeSe nanosheets using low-energy ion irradiation to realize a lateral memtransistor.This may provide promising opportunities for artificial neuromorphic system applications based on 2D layered materials. 展开更多
关键词 artificial synapses GeSe nanosheet interfacial modulation low-energy ion irradiation memtransistor
原文传递
调节Co_(3)O_(4)的价电子结构提高硝酸根还原制氨的催化活性 被引量:1
15
作者 陈文达 陈志达 +11 位作者 黄振城 郑黎荣 赵晓娟 胡江涛 曹慧群 李永亮 任祥忠 欧阳晓平 叶盛华 颜学庆 张黔玲 刘剑洪 《Science China Materials》 SCIE EI CAS CSCD 2023年第10期3901-3911,共11页
通过硝酸根电化学还原反应将NO_(3)^(-)转化为NH_(3)是一种有前景的制氨和“绿氢”储存方案.Co_(3)O_(4)对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co_(3)O_(4)上发生硝酸根还原反应仍需... 通过硝酸根电化学还原反应将NO_(3)^(-)转化为NH_(3)是一种有前景的制氨和“绿氢”储存方案.Co_(3)O_(4)对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co_(3)O_(4)上发生硝酸根还原反应仍需较高的过电位,从而阻碍了能量转换效率的提升.本文中,我们合成了Cu掺杂Co_(3)O_(4)多孔空心纳米球用作硝酸根还原析氨催化剂.Cu掺杂在保障析氨法拉第效率和稳定性的前提下大幅降低了反应所需的过电位,有效提高了析氨速率.实验和理论分析均表明,Cu掺杂使Co_(3)O_(4)的最高占据态能量上移,缩小了Co_(3)O_(4)的最高占据态与NO_(3)^(-)的最低未占据分子轨道之间的能垒,从而降低了电子从Co_(3)O_(4)向NO_(3)^(-)跃迁所需的过电位,赋予了Cu掺杂Co_(3)O_(4)多孔空心纳米球优异的硝酸根还原析氨电催化活性和耐久性.本研究为纳米材料的电化学性能调控研究提供了新的理论视角. 展开更多
关键词 Co_(3)O_(4) nitrate reduction reaction AMMONIA frontier orbital
原文传递
Modulating the electronic spin state by constructing dual-metal atomic pairs for activating the dynamic site of oxygen reduction reaction
16
作者 Shenghua Ye Shuhua Xie +11 位作者 Yaqi Lei Xiuyuan Yang Jing Hu Lirong Zheng Zhida Chen Yonghuan Fu Xiangzhong Ren Yongliang Li xiaoping ouyang Qianling Zhang Jianhong Liu Xueliang Sun 《Nano Research》 SCIE EI CSCD 2023年第2期1869-1877,共9页
In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binu... In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binuclear MnFeN8 structure was verified experimentally and theoretically.Magnetic measurements and Gaussian calculations reveal that this unique Mn-Fe BNSs exhibit strong short-range electronic interaction between Mn and Fe sites,which decouples two paired d electrons in Fe sites,thereby transforming Fe sites from an intermediate to a high spin state.The optimal electronic configuration of Fe sites and their binuclear structure facilitate an oxygen reduction reaction(ORR)thermodynamically and dynamically,respectively,endowing Mn-Fe BNSs with improved ORR performance. 展开更多
关键词 manganese(Mn)-iron(Fe)binuclear sites synergistic effect spin state oxygen reduction reaction
原文传递
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
17
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren xiaoping ouyang Jianhong Liu Biwei Xiao Jiangtao Hu Qianling Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte High voltage Layered oxide cathode Flame retardant
下载PDF
温和光热疗法在肿瘤治疗中的研究进展 被引量:7
18
作者 黄星星 刘颖 +12 位作者 张若男 冯娇 刘水平 段婷 张明明 项煜 陈碧 陈夏颖 陈鹏 张文政 谢恬 欧阳晓平 隋新兵 《科学通报》 EI CAS CSCD 北大核心 2020年第32期3538-3550,共13页
癌症是目前世界上发病率和死亡率最高的疾病之一.光热疗法(photothermal therapy,PTT)是一种无创的癌症治疗新策略,即把具有较高光热转化效率的材料(photothermal agent,PTA)注入人体内部,利用靶向性聚集在肿瘤组织附近,再在近红外(near... 癌症是目前世界上发病率和死亡率最高的疾病之一.光热疗法(photothermal therapy,PTT)是一种无创的癌症治疗新策略,即把具有较高光热转化效率的材料(photothermal agent,PTA)注入人体内部,利用靶向性聚集在肿瘤组织附近,再在近红外(near-infrared,NIR)等外部光源的照射下,将光能转化为热能来杀死癌细胞.然而,光热治疗所需要达到的高温可能对正常组织损伤较大,因此,相对低温的温和光热疗法(mild photothermal therapy,MPTT)备受关注.温和光热疗法本身的抗肿瘤作用有限,通常需与其他疗法联合以构建协同治疗体系,达到治疗肿瘤的目的.近期,本团队合成了一种二维锗量子点光热转换材料,突破了既往无法得到二维材料以及传统材料光热转换效率低的重大难题.本文从温和光热疗法常用光热转换剂的类型及特点、主要障碍及其解决策略、抗肿瘤作用机制、与其他疗法联合的效果等方面对温和光热疗法在肿瘤治疗中的研究现状进行系统性总结,并对未来的发展方向进行展望和讨论,旨在为肿瘤治疗提供一种新思路和新方法. 展开更多
关键词 温和光热疗法 肿瘤 纳米材料 联合疗法
原文传递
Erianin,a novel dibenzyl compound in Dendrobium extract,inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis 被引量:58
19
作者 Peng Chen Qibiao Wu +32 位作者 Jiao Feng Lili Yan Yitian Sun Shuiping Liu Yu Xiang Mingming Zhang Ting Pan Xiaying Chen Ting Duan Lijuan Zhai Bingtao Zhai Wengang Wang Ruonan Zhang Bi Chen Xuemeng Han Yicong Li Liuxi Chen Ying Liu Xingxing Huang Ting Jin Wenzheng Zhang Hong Luo Xiaohui Chen Yongqiang Li Qiujie Li Guohua Li Qin Zhang Lvjia Zhuo Zuyi Yang Huifen Tang Tian Xie xiaoping ouyang Xinbing Sui 《Signal Transduction and Targeted Therapy》 SCIE CSCD 2020年第1期1882-1892,共11页
Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells m... Ferroptosis,a novel form of programmed cell death,is characterized by iron-dependent lipid peroxidation and has been shown to be involved in multiple diseases,including cancer.Stimulating ferroptosis in cancer cells may be a potential strategy for cancer therapy.Therefore,ferroptosis-inducing drugs are attracting more attention for cancer treatment.Here,we showed that erianin,a natural product isolated from Dendrobium chrysotoxum Lindl,exerted its anticancer activity by inducing cell death and inhibiting cell migration in lung cancer cells.Subsequently,we demonstrated for the first time that erianin induced ferroptotic cell death in lung cancer cells,which was accompanied by ROS accumulation,lipid peroxidation,and GSH depletion.The ferroptosis inhibitors Fer-1 and Lip-1 but not Z-VAD-FMK,CQ,or necrostatin-1 rescued erianin-induced cell death,indicating that ferroptosis contributed to erianin-induced cell death.Furthermore,we demonstrated that Ca^(2+)/CaM signaling was a critical mediator of erianin-induced ferroptosis and that blockade of this signaling significantly rescued cell death induced by erianin treatment by suppressing ferroptosis.Taken together,our data suggest that the natural product erianin exerts its anticancer effects by inducing Ca^(2+)/CaMdependent ferroptosis and inhibiting cell migration,and erianin will hopefully serve as a prospective compound for lung cancer treatment. 展开更多
关键词 PEROXIDATION lung drugs
原文传递
Status and development of high-power laser facilities at the NLHPLP 被引量:13
20
作者 Jianqiang Zhu Jian Zhu +30 位作者 Xuechun Li Baoqiang Zhu Weixin Ma Xingqiang Lu Wei Fan Zhigang Liu Shenlei Zhou Guang Xu Guowen Zhang Xinglong Xie Lin Yang Jiangfeng Wang xiaoping ouyang Li Wang Dawei Li Pengqian Yang Quantang Fan Mingying Sun Chong Liu Dean Liu Yanli Zhang Hua Tao Meizhi Sun Ping Zhu Bingyan Wang Zhaoyang Jiao Lei Ren Daizhong Liu Xiang Jiao Hongbiao Huang Zunqi Lin 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2018年第4期21-43,共23页
In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG... In this paper, we review the status of the multifunctional experimental platform at the National Laboratory of High Power Laser and Physics(NLHPLP). The platform, including the SG-II laser facility, SG-II 9th beam, SG-II upgrade(SG-II UP) facility, and SG-II 5 PW facility, is operational and available for interested scientists studying inertial confinement fusion(ICF) and a broad range of high-energy-density physics. These facilities can provide important experimental capabilities by combining different pulse widths of nanosecond, picosecond, and femtosecond scales. In addition, the SG-II UP facility, consisting of a single petawatt system and an eight-beam nanosecond system, is introduced including several laser technologies that have been developed to ensure the performance of the facility. Recent developments of the SG-II 5 PW facility are also presented. 展开更多
关键词 HIGH-POWER laser FACILITY INERTIAL CONFINEMENT fusion SOLID-STATE AMPLIFIER
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部