期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
高结构稳定性、低泄漏率三维铜@石墨烯复合相变材料的制备 被引量:4
1
作者 李晓明 高逸丹 +8 位作者 孔庆强 谢莉婧 刘卓 郭晓倩 刘燕珍 卫贤贤 杨晓 张兴华 陈成猛 《物理化学学报》 SCIE CAS CSCD 北大核心 2022年第1期143-154,共12页
由于能源消费需求的持续增长和传统化学燃料的日益枯竭,对可再生能源的需求日益迫切。以地热能、太阳能为代表的可再生能源脱颖而出。然而,这些能源的应用易受到天气、季节、地点和时间的影响,具有不稳定性、随机性、波动性和间歇性。... 由于能源消费需求的持续增长和传统化学燃料的日益枯竭,对可再生能源的需求日益迫切。以地热能、太阳能为代表的可再生能源脱颖而出。然而,这些能源的应用易受到天气、季节、地点和时间的影响,具有不稳定性、随机性、波动性和间歇性。储能技术是解决上述问题的有效途径,它可以在需要的时候储存或释放能量。在各种储能技术可选材料中,相变材料(PCMs)是智能热能管理和便携式热能领域的有力候选者。大多数相变材料都存在导热系数低、环境污染、熔点泄漏等问题,因此有必要将相变材料封装到支撑骨架材料中。事实上,支撑材料在应用中仍面临着一些重大挑战。首先,骨架材料应能抵抗相变材料在相变过程中的体积变化,即具有良好的结构稳定性。其次,还应具有较高的导热系数和较低的泄漏率。石墨烯气凝胶(GA)已被证明是提高相变材料形状稳定性的有效支撑骨架,但相变引起的泄漏和网络结构的脆性是制约其应用的关键问题。在此,我们提出了一种双脉冲电镀的强化策略,用于制备铜@石墨烯气凝胶(Cu@GA)作为相变储能骨架材料。这一结构设计中,石墨烯气凝胶上的石墨烯片层上均匀地镀上了铜层,且不同片之间被铜镀层所连接。这种铜增强石墨烯气凝胶网络结构赋予复合材料良好的导热性和坚固的骨架稳定性,有利于增强相变换热和抑制相变过程中的泄漏。此外,通过真空浸渍法将十八胺(ODA)封装在Cu@GA骨架中,获得了结构稳定性高、泄漏率低的复合相变材料(Cu@GA/ODA),保证了ODA在Cu@GA骨架材料中的均匀分散和填充。通过比较复合相变材料的重量变化,研究了不同骨架对复合相变材料泄漏率的影响。优化后的复合相变材料(CPCM)Cu@GA/ODA经20次储热、放热循环后,泄漏率降低至19.82%(w,质量分数),而GA/ODA和GOA/ODA为骨架的复合相变材料的泄漏率分别为80.31%(w)和72.99%(w)。为了探讨这种影响的原因,用扫描电子显微镜(SEM)观察了循环后骨架的形貌。铜/石墨烯气凝胶(Cu@GA)骨架材料没有明显的收缩或坍塌,仍可以保持完整的三维网络结构,而氧化石墨烯气凝胶(GOA)和石墨烯气凝胶(GA)的骨架材料三维结构不复存在,且在氧化石墨烯/石墨烯片能够观察到明显的裂隙。铜涂层可以提高骨架的微观结构稳定性,有利于提高结构稳定性,降低复合材料的泄漏率。同时,该研究为构建理想的金属增强石墨烯气凝胶复合骨架材料铺平了新的道路,该复合材料具有优异的综合性能,可用于未来的相变储能、多孔微波吸收和储能应用。 展开更多
关键词 电镀 铜/石墨烯气凝胶 三维石墨烯骨架 相变材料 脆性
下载PDF
Effect of electrode Pt-loading and cathode flow-field plate type on the degradation of PEMFC 被引量:5
2
作者 Lijuan Qu Zhiqiang Wang +5 位作者 xiaoqian guo Wei Song Feng Xie Liang He Zhigang Shao Baolian Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期95-103,I0005,共10页
The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this stu... The electrode Pt-loading has an effect on the number of active sites and the thickness of catalyst layer,which has huge influence on the mass transfer and water management during dynamic process in PEMFCs. In this study, membrane electrode assemblies with different Pt-loadings were prepared, and PEMFCs were assembled using those membrane electrode assemblies with traditional solid plate and water transport plate as cathode flow-field plates, respectively. The performance and electrochemical surface area of cells were characterized to evaluate the membrane electrode assemblies degradation after rapid currentvariation cycles. Scanning electron microscope and transmission electron microscope were used to investigate the decay of catalyst layers and Pt/C catalyst. With the increase of Pt-loading, the performance degradation of membrane electrode assemblies will be mitigated. But higher Pt-loading means thicker catalyst layer, which leads to a longer pathway of mass transfer, and it may result in carbon material corrosion in membrane electrode assemblies. The decay of Pt/C catalyst in cathode is mainly caused by the corrosion of carbon support, and the degradation of anode Pt/C catalyst is a consequence of migration and aggregation of Pt particles. And using water transport plate is beneficial to alleviating the age of cathode Pt/C catalyst. 展开更多
关键词 PROTON exchange membrane fuel cell ELECTRODE PLATINUM LOADING Current-variation cycle Traditional solid PLATE Water transport PLATE
下载PDF
Ce(Ⅲ)-modulation over non-enzymatic Pt/CeO_(2)/GO biosensor with outstanding sensitivity and stability for lactic acid detection
3
作者 Luyao Zhang Fuli Tian +6 位作者 Huan Li Jiangman Meng Qi Liu xiaoqian guo Yun Qiu Jun Zhang Changyan Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第9期1437-1447,I0006,共12页
A series of non-enzymatic graphene functionalized biosensors was developed via deposition precipitation method for lactic acid(LA) detection,which we re characterized by transmission electron micro scopy(TEM),Raman sp... A series of non-enzymatic graphene functionalized biosensors was developed via deposition precipitation method for lactic acid(LA) detection,which we re characterized by transmission electron micro scopy(TEM),Raman spectroscopy,X-ray photoelectron spectroscopy(XPS),gas chromatography-mass spectrometry,liquid chromatography-mass spectro metry,and proton nuclear magnetic re sonance(~1H NMR).The electrochemical performances of the non-enzymatic biosensors were measured by means of the electrochemical impedance spectroscopy(EIS) and cyclic voltammetry(CV) method.The comprehensive analysis of structures shows that Pt,CeO_(2),and GO components interact with each other.During the storing and releasing oxygen,the valence ratio of Ce^(3+)/Ce^(4+) and the number of oxygen vacancies in CeO_(2) change accordingly,which can be conducive to increasing electronic transmission capacity and finally leads to the improvement of electrocatalytic performance.Among them,the Pt/CeO_(2)/GO biosensor containing 0.47 at% platinum exhibits an excellent electrochemical detection performance with high sensitivity of 12.3 μA·L/(mmol·cm^(2)) and a low limit of detection(LOD) of 5.12 μmol/L in a wide linear range from 10 to 900 μmol/L.In addition,the proposed biosensor possesses a promising anti-interference capability,as well as high stability and good reproducibility,which was assessed by testing the cyclic voltammogram in 0.1 mol/L lactic acid one year later.The underlying mechanism was proposed for electrochemical oxidation of LA to carbon dioxide and acetic acid with the synergistic effect among Pt,CeO_(2),and GO.Furthermore,the results of the standard addition method in real samples(human serum and urine samples) reveal that the lactic acid detection of the non-enzymatic Pt/CeO_(2)/GO biosensor is accompanied by high reliability.Thus,it will be a valuable biosensor for in vitro detection of lactic acid level in clinical samples. 展开更多
关键词 Non-enzymatic biosensor Lactic acid Graphene functionalized Pt/CeO_(2) Oxygen vacancy Synergistic effect Rare earths
原文传递
Influence of co-solvent hydroxyl group number on properties of water-based conductive carbon pastes 被引量:3
4
作者 Chengjie Hua Xiaoming Li +6 位作者 Lijuan Shen Hong Lei xiaoqian guo Zhuo Liu Qingqiang Kong Lijing Xie cheng-Meng Chen 《Particuology》 SCIE EI CAS CSCD 2017年第4期35-41,共7页
A series of water-based conductive carbon pastes were prepared by wet ball milling, followed by vacuum defoaming using isopropyl alcohol, propylene glycol or glycerin as co-solvents. Screen printing was then used to p... A series of water-based conductive carbon pastes were prepared by wet ball milling, followed by vacuum defoaming using isopropyl alcohol, propylene glycol or glycerin as co-solvents. Screen printing was then used to prepare conductive patterns. To determine the influence of co-solvent hydroxyl group number on the properties of water-based conductive carbon pastes, the rheological properties of the pastes and the surface morphologies and conductivities of the printed patterns were characterized. The results show that paste viscosity increased with the number of hydroxyl groups and the latter also affected thixotropy. In addition, the boiling points and surface tensions of the co-solvents increased consistently with hydroxyl group number, affecting the hydrodynamic flow. The conductive carbon paste created using propylene glycol as a co-solvent was the best for screen printing because of its weak coffee-ring effect and appro- priate rheological properties, resulting in a smooth coating surface and uniform deposition of the fillers. The resistivity of the pattern printed using paste PG, containing the closest packing of conductive carbon black particles, was 0.44 Ω cm. 展开更多
关键词 Water-based conductive carbon paste Alcohol co-solvent Screen printing Rheological property Marangoni flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部