Through multi-order structure function analysis and singularity measurement,the Hurst index and intermittent parameter are obtained to quantitatively describe the characteristics of atmospheric disturbance based on th...Through multi-order structure function analysis and singularity measurement,the Hurst index and intermittent parameter are obtained to quantitatively describe the characteristics of atmospheric disturbance based on the round-trip intelligent sounding system(RTISS)in the lower-middle stratosphere.According to the third-order structure function,small-scale gravity waves are classified into three states:stable,unstable,and accompanied by turbulence.The evolution of gravity waves is reflected by the variation of the third-order structure function over time,and the generation of turbulence is also observed.The atmospheric disturbance intensity parameter RT is defined in this paper and contains both wave disturbance(H_(1))and random intermittency(C_(1)).RT is considered to reflect the characteristics of atmospheric disturbance more reasonably than either of the above two alone.In addition,by obtaining the horizontal wavenumber spectrum from the flat-floating stage and the vertical wavenumber spectrum from the ascending and descending stages at the height range of18-24 km,we found that when the gravity wave activity is significantly enhanced in the horizontal direction,the amplitude of the vertical wavenumber spectrum below is significantly larger,which shows a significant impact of gravity wave activity on the atmospheric environment below.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41875045)the National Key Research and Development Project(2018YFC1506200)+1 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20210056)the support provided by"Western Light"Cross-Team Project of Chinese Academy of Sciences,Key Laboratory Cooperative Research Project。
文摘Through multi-order structure function analysis and singularity measurement,the Hurst index and intermittent parameter are obtained to quantitatively describe the characteristics of atmospheric disturbance based on the round-trip intelligent sounding system(RTISS)in the lower-middle stratosphere.According to the third-order structure function,small-scale gravity waves are classified into three states:stable,unstable,and accompanied by turbulence.The evolution of gravity waves is reflected by the variation of the third-order structure function over time,and the generation of turbulence is also observed.The atmospheric disturbance intensity parameter RT is defined in this paper and contains both wave disturbance(H_(1))and random intermittency(C_(1)).RT is considered to reflect the characteristics of atmospheric disturbance more reasonably than either of the above two alone.In addition,by obtaining the horizontal wavenumber spectrum from the flat-floating stage and the vertical wavenumber spectrum from the ascending and descending stages at the height range of18-24 km,we found that when the gravity wave activity is significantly enhanced in the horizontal direction,the amplitude of the vertical wavenumber spectrum below is significantly larger,which shows a significant impact of gravity wave activity on the atmospheric environment below.