Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning probl...Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.展开更多
Background Genomic selection involves choosing as parents those elite individuals with the higher genomic estimated breeding values(GEBV)to accelerate the speed of genetic improvement in domestic animals.But after mul...Background Genomic selection involves choosing as parents those elite individuals with the higher genomic estimated breeding values(GEBV)to accelerate the speed of genetic improvement in domestic animals.But after multi-generation selection,the rate of inbreeding and the occurrence of homozygous harmful alleles might increase,which would reduce performance and genetic diversity.To mitigate the above problems,we can utilize genomic mating(GM)based upon optimal mate allocation to construct the best genotypic combinations in the next generation.In this study,we used stochastic simulation to investigate the impact of various factors on the efficiencies of GM to optimize pairing combinations after genomic selection of candidates in a pig population.These factors included:the algorithm used to derive inbreeding coefficients;the trait heritability(0.1,0.3 or 0.5);the kind of GM scheme(focused average GEBV or inbreeding);the approach for computing the genomic relationship matrix(by SNP or runs of homozygosity(ROH)).The outcomes were compared to three traditional mating schemes(random,positive assortative or negative assortative matings).In addition,the performance of the GM approach was tested on real datasets obtained from a Large White pig breeding population.Results Genomic mating outperforms other approaches in limiting the inbreeding accumulation for the same expected genetic gain.The use of ROH-based genealogical relatedness in GM achieved faster genetic gains than using relatedness based on individual SNPs.The GROH-based GM schemes with the maximum genetic gain resulted in 0.9%-2.6%higher rates of genetic gainΔG,and 13%-83.3%lowerΔF than positive assortative mating regardless of heritability.The rates of inbreeding were always the fastest with positive assortative mating.Results from a purebred Large White pig population,confirmed that GM with ROH-based GRM was more efficient than traditional mating schemes.Conclusion Compared with traditional mating schemes,genomic mating can not only achieve sustainable genetic progress but also effectively control the rates of inbreeding accumulation in the population.Our findings demonstrated that breeders should consider using genomic mating for genetic improvement of pigs.展开更多
Objective: To study the sonographic features of the primary site of papillary thyroid microcarcinoma(PTMC) for the prediction of cervical lymph node metastasis during preoperative diagnosis.Methods: A total of 710 PTM...Objective: To study the sonographic features of the primary site of papillary thyroid microcarcinoma(PTMC) for the prediction of cervical lymph node metastasis during preoperative diagnosis.Methods: A total of 710 PTMC patients between 2013 and 2016 with a diagnosis of cervical lymph node metastases were reviewed.We analyzed the sonographic features of the PTMC primary site to predict ipsilateral or central lymph node metastases in univariate and multivariate models.The ratio of abutment/perimeter of the PTMC primary site was utilized to evaluate cervical lymph node status.Results: Regarding clinical characteristics, multifocality and extrathyroidal extension were associated with cervical lymph node involvement.In the multivariate regression model, calcification and the abutment/perimeter ratio of lesions were evaluated as independent factors in level Ⅵ, ipsilateral or skip cervical lymph node metastases.The cut-off value of the ratio of abutment/perimeter of the PTMC primary site(25%) was significantly correlated with cervical lymph node metastases(P = 0.000).Conclusions: Independent sonographic features, including lesion size, lesion location, calcification, and the ratio of abutment/perimeter of the primary site, were associated with cervical lymph node metastases in PTMC patients.展开更多
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH...The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given.展开更多
The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stre...The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis.展开更多
An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage traje...An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage trajectory is approximated by Taylor series expansion to the quadratic terms,which limits the valid synthetic aperture length and the angular reconstruction range severely.Based on the model of the CSAR echo signal,the proposed algorithm directly transforms the signal to the two-dimensional(2D) wavenumber domain,not using approximation processing to the range trajectory.Based on form of the signal spectrum in the wavenumber domain,the formula for the wavenumber domain interpolation of the w-k algorithm is deduced,and the wavenumber spectrum of the reference point used for bulk compression is obtained from numerical method.The improved CSAR ω-k imaging algorithm increases the valid synthetic aperture length and the angular area greatly and hence improves the angular resolution of the cylindrical imaging.Additionally,the proposed algorithm can be repeated on different cylindrical surfaces to achieve three dimensional(3D) image reconstruction.The 3D spatial resolution of the CSAR system is discussed,and the simulation results validate the correctness of the analysis and the feasibility of the algorithm.展开更多
Objective:This study proposed a modified Blumgart anastomosis(m-BA)that uses a firm ligation of the main pancreatic duct with a supporting tube to replace the pancreatic duct-to-jejunum mucosa anastomosis,with the ...Objective:This study proposed a modified Blumgart anastomosis(m-BA)that uses a firm ligation of the main pancreatic duct with a supporting tube to replace the pancreatic duct-to-jejunum mucosa anastomosis,with the aim of simplifying the complicated steps of the conventional BA(c-BA).Thus,we observe if a difference in the risk of postoperative pancreatic fistula(POPF)exists between the two methods.Methods:The m-BA anastomosis method has been used since 2010.From October 2011 to October 2015,147 patients who underwent pancreatoduodenectomy(PD)using BA in Tianjin Medical University Cancer Institute and Hospital were enrolled in this study.According to the type of pancreatojejunostomy(PJ),50 patients underwent m-BA and 97 received c-BA.The two patient cohorts were compared prospectively to some extent but not randomized,and the evaluated variables were operation time,the incidence rate of POPF,and other perioperative complications.Results:The operation time showed no significant difference(P〉0.05)between the two groups,but the time of duct-to-mucosa anastomosis in the m-BA group was much shorter than that in the c-BA group(P〈0.001).The incidence rate of clinically relevant POPF was 12.0%(6/50)in the modified group and 10.3%(10/97)in the conventional group(P〉0.05),which means that the modified anastomosis method did not cause additional pancreatic leakage.The mean length of postoperative hospital stay of the m-BA group was 23 days,and that of the c-BA group was 22 days(P〉0.05).Conclusions:Compared with the conventional BA,we suggest that the modified BA is a feasible,safe,and effective operation method for P J of PD with no sacrifice of surgical quality.In the multivariate analysis,we also found that body mass index(≥25展开更多
The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylen...The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylene/ethane mixtures.However,MOFs are normally crystalline powders that cause multiple problems,such as dust,abrasion and heat/mass loss,as well as significant pressure drops on the adsorption bed resulting in a sudden stop in production.To solve these issues,we have prepared four different sphere-shaped adsorbents,including Mg-gallate,Co-gallate,MUV-10(Mn)and MIL-53(Al)using a calcium alginate method to achieve excellent ethylene/ethane separation performance.The performance of the sphere-shaped adsorbents has been validated using mechanical strength measurements,powder X-ray diffraction,scanning electron microscopy,thermogravimetric analysis,gas adsorption isotherms and dynamic breakthrough experiments.The excellent mechanical strength of these sphere-shaped adsorbents meets the criteria for industrial application in gas separation.Thus,the energy consumption and operating cost will be further reduced in the ethylene production process.We believe that this shaping method will open a prosperous route to the development of MOFs toward higher technology levels and their commercial application.展开更多
The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circu...The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.展开更多
Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH...Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.展开更多
Objective:Hepatocellular carcinoma(HCC)is a common malignancy associated with high morbidity and mortality rates worldwide.Early diagnosis plays an important role in the improvement of HCC prognosis.Methods:In this st...Objective:Hepatocellular carcinoma(HCC)is a common malignancy associated with high morbidity and mortality rates worldwide.Early diagnosis plays an important role in the improvement of HCC prognosis.Methods:In this study,we conducted a comprehensive analysis of HCC DNA methylation and gene expression datasets in The Cancer Genome Atlas(TCGA),to identify a prognostic signature for HCC diagnosis and survival prediction.First,we identified differential methylation CpG(dmCpG)sites in HCC samples and compared them with those in adjacent normal liver tissues;this was followed by univariate analysis and Sure Independence Screening(SIS)in the training set.The robustness of the identified prognostic signature was evaluated using the testing set.To explore the biological processes involved in HCC progression,we also performed functional enrichment analysis for overlapping genes between genes containing dmCpG sites(DMGs)and differential expression genes(DEGs)in HCC patients,using data from the Database for Annotation,Visualization,and Integrated Discovery(DAVID).Results:As a result,we identified five CpG sites that were significantly associated with HCC survival through univariate analysis and SIS.Univariate analysis of clinical characteristics identified age and risk factors(including alcohol consumption and smoking)as independent factors that indicated HCC survival.Multivariate analysis indicated that the integrated prognostic signature(weighted combination of the five CpG sites)that took age and risk factors into consideration resulted in more accurate survival prediction.Conclusions:This study provides a novel signature for predicting HCC survival,and should be helpful for early HCC diagnosis and personalized treatment.展开更多
Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this ...Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study,six images acquired in Global Observation(GLO)and Wide ScanSAR(WSC)modes at verticalvertical(VV)polarization channel are discussed.This work focuses on investigating the observation of rainfall using GF-3 SAR.These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF),significant wave height simulated from the WAVEWATCH-III(WW3)model,sea surface currents from climate forecast system version 2(CFSv2)of the National Centers for Environmental Prediction(NCEP)and rain rate data from the Tropical Rainfall Measuring Mission(TRMM)satellite.Sea surface roughness,was compared with the normalized radar cross section(NRCS)from SAR observations,and indicated a 0.8 correlation(COR).We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height.It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15°to 30°,while it enhances the radar signal at incidence angles ranging from 30°to 45°and incidence angles smaller than 10°.This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.展开更多
Objective:Large volume radiological text data have been accumulated since the incorporation of electronic health record(EHR)systems in clinical practice.We aimed to determine whether deep natural language processing a...Objective:Large volume radiological text data have been accumulated since the incorporation of electronic health record(EHR)systems in clinical practice.We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis.Methods:Sonographic EHR data were obtained from the EHR database.Pathological reports were used as the gold standard for diagnosing thyroid cancer.We developed thyroid cancer diagnosis based on natural language processing(THCaDxNLP)to interpret unstructured sonographic text reports for thyroid cancer diagnosis.We used the area under the receiver operating characteristic curve(AUROC)as the primary metric to measure the performance of the THCaDxNLP.We compared the performance of thyroid ultrasound radiologists aided with THCaDxNLP vs.those without THCaDxNLP using 5 independent test sets.Results:We obtained a total number of 788,129 sonographic radiological reports.The number of thyroid sonographic data points was 132,277,18,400 of which were thyroid cancer patients.Among the 5 test sets,the numbers of patients per set were 439,186,82,343,and 171.THCaDxNLP achieved high performance in identifying thyroid cancer patients(the AUROC ranged from 0.857–0.932).Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without THCaDxNLP in terms of accuracy(93.8%vs.87.2%;one-sided t-test,adjusted P=0.003),precision(92.5%vs.86.0%;P=0.018),and F1 metric(94.2%vs.86.4%;P=0.007).Conclusions:THCaDxNLP achieved a high AUROC for the identification of thyroid cancer,and improved the accuracy,sensitivity,and precision of thyroid ultrasound radiologists.This warrants further investigation of THCaDxNLP in prospective clinical trials.展开更多
Keloids are a notorious fibroproliferative disorder that may cause cosmetic concerns and life inconvenience.Various methods such as surgery,injection,and laser have been used;however,single treatments are at risk of r...Keloids are a notorious fibroproliferative disorder that may cause cosmetic concerns and life inconvenience.Various methods such as surgery,injection,and laser have been used;however,single treatments are at risk of recurrence;therefore,comprehensive therapy is the better solution.Here,we focused on the management of different medical interventions according to subjective and objective conditions of keloid patients and summarized several clinical comprehensive strategies based on our clinical experience.One original concept of laser combined with radiotherapy was also introduced as a promising method,especially for wide-based pathological scars.展开更多
基金supported by the Opening Fund of Shandong Provincial Key Laboratory of Network based Intelligent Computing,the National Natural Science Foundation of China(52205529,61803192)the Natural Science Foundation of Shandong Province(ZR2021QE195)+1 种基金the Youth Innovation Team Program of Shandong Higher Education Institution(2023KJ206)the Guangyue Youth Scholar Innovation Talent Program support received from Liaocheng University(LCUGYTD2022-03).
文摘Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm.
基金funded by the Natural Science Foundations of China(No.32172702)National Key Research and Development Program of China(2021YFD1301101)Agricultural Science and Technology Innovation Program(ASTIP-IAS02)。
文摘Background Genomic selection involves choosing as parents those elite individuals with the higher genomic estimated breeding values(GEBV)to accelerate the speed of genetic improvement in domestic animals.But after multi-generation selection,the rate of inbreeding and the occurrence of homozygous harmful alleles might increase,which would reduce performance and genetic diversity.To mitigate the above problems,we can utilize genomic mating(GM)based upon optimal mate allocation to construct the best genotypic combinations in the next generation.In this study,we used stochastic simulation to investigate the impact of various factors on the efficiencies of GM to optimize pairing combinations after genomic selection of candidates in a pig population.These factors included:the algorithm used to derive inbreeding coefficients;the trait heritability(0.1,0.3 or 0.5);the kind of GM scheme(focused average GEBV or inbreeding);the approach for computing the genomic relationship matrix(by SNP or runs of homozygosity(ROH)).The outcomes were compared to three traditional mating schemes(random,positive assortative or negative assortative matings).In addition,the performance of the GM approach was tested on real datasets obtained from a Large White pig breeding population.Results Genomic mating outperforms other approaches in limiting the inbreeding accumulation for the same expected genetic gain.The use of ROH-based genealogical relatedness in GM achieved faster genetic gains than using relatedness based on individual SNPs.The GROH-based GM schemes with the maximum genetic gain resulted in 0.9%-2.6%higher rates of genetic gainΔG,and 13%-83.3%lowerΔF than positive assortative mating regardless of heritability.The rates of inbreeding were always the fastest with positive assortative mating.Results from a purebred Large White pig population,confirmed that GM with ROH-based GRM was more efficient than traditional mating schemes.Conclusion Compared with traditional mating schemes,genomic mating can not only achieve sustainable genetic progress but also effectively control the rates of inbreeding accumulation in the population.Our findings demonstrated that breeders should consider using genomic mating for genetic improvement of pigs.
基金supported by grants from the National Natural Science Foundation of China(Grant No.81771852)
文摘Objective: To study the sonographic features of the primary site of papillary thyroid microcarcinoma(PTMC) for the prediction of cervical lymph node metastasis during preoperative diagnosis.Methods: A total of 710 PTMC patients between 2013 and 2016 with a diagnosis of cervical lymph node metastases were reviewed.We analyzed the sonographic features of the PTMC primary site to predict ipsilateral or central lymph node metastases in univariate and multivariate models.The ratio of abutment/perimeter of the PTMC primary site was utilized to evaluate cervical lymph node status.Results: Regarding clinical characteristics, multifocality and extrathyroidal extension were associated with cervical lymph node involvement.In the multivariate regression model, calcification and the abutment/perimeter ratio of lesions were evaluated as independent factors in level Ⅵ, ipsilateral or skip cervical lymph node metastases.The cut-off value of the ratio of abutment/perimeter of the PTMC primary site(25%) was significantly correlated with cervical lymph node metastases(P = 0.000).Conclusions: Independent sonographic features, including lesion size, lesion location, calcification, and the ratio of abutment/perimeter of the primary site, were associated with cervical lymph node metastases in PTMC patients.
基金supported from the Natural Science Foundation of China (Grant Nos. 21771012, 21601008 and 21576006)the National Natural Science Fund for Innovative Research Groups (Grant No. 51621003)the China Postdoctoral Science Foundation (Grant No. 2016M600879)
文摘The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given.
基金This work was supported by the National Natural Science Foundation of China(NSFC,Grant No.51874175)the China Coal Technology&Engineering Group Foundation(Grant Nos.2018RC001,KJ-2018-TDKCZL-02).Comments from two anonymous reviewers and the editor are also greatly appreciated.
文摘The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis.
文摘An improved circular synthetic aperture radar(CSAR) imaging algorithm of omega-k(ω-k) type mainly for reconstructing an image on a cylindrical surface is proposed.In the typical CSAR ω-k algorithm,the rage trajectory is approximated by Taylor series expansion to the quadratic terms,which limits the valid synthetic aperture length and the angular reconstruction range severely.Based on the model of the CSAR echo signal,the proposed algorithm directly transforms the signal to the two-dimensional(2D) wavenumber domain,not using approximation processing to the range trajectory.Based on form of the signal spectrum in the wavenumber domain,the formula for the wavenumber domain interpolation of the w-k algorithm is deduced,and the wavenumber spectrum of the reference point used for bulk compression is obtained from numerical method.The improved CSAR ω-k imaging algorithm increases the valid synthetic aperture length and the angular area greatly and hence improves the angular resolution of the cylindrical imaging.Additionally,the proposed algorithm can be repeated on different cylindrical surfaces to achieve three dimensional(3D) image reconstruction.The 3D spatial resolution of the CSAR system is discussed,and the simulation results validate the correctness of the analysis and the feasibility of the algorithm.
文摘Objective:This study proposed a modified Blumgart anastomosis(m-BA)that uses a firm ligation of the main pancreatic duct with a supporting tube to replace the pancreatic duct-to-jejunum mucosa anastomosis,with the aim of simplifying the complicated steps of the conventional BA(c-BA).Thus,we observe if a difference in the risk of postoperative pancreatic fistula(POPF)exists between the two methods.Methods:The m-BA anastomosis method has been used since 2010.From October 2011 to October 2015,147 patients who underwent pancreatoduodenectomy(PD)using BA in Tianjin Medical University Cancer Institute and Hospital were enrolled in this study.According to the type of pancreatojejunostomy(PJ),50 patients underwent m-BA and 97 received c-BA.The two patient cohorts were compared prospectively to some extent but not randomized,and the evaluated variables were operation time,the incidence rate of POPF,and other perioperative complications.Results:The operation time showed no significant difference(P〉0.05)between the two groups,but the time of duct-to-mucosa anastomosis in the m-BA group was much shorter than that in the c-BA group(P〈0.001).The incidence rate of clinically relevant POPF was 12.0%(6/50)in the modified group and 10.3%(10/97)in the conventional group(P〉0.05),which means that the modified anastomosis method did not cause additional pancreatic leakage.The mean length of postoperative hospital stay of the m-BA group was 23 days,and that of the c-BA group was 22 days(P〉0.05).Conclusions:Compared with the conventional BA,we suggest that the modified BA is a feasible,safe,and effective operation method for P J of PD with no sacrifice of surgical quality.In the multivariate analysis,we also found that body mass index(≥25
基金support from the National Natu-ral Science Foundation of China(Nos.21908153,21922810 and 21878205).
文摘The separation of ethylene and ethane is a crucial,challenging and cost-intensive process in chemical engineering.Metal-organic frameworks(MOFs)are a class of novel porous adsorbents used for the separation of ethylene/ethane mixtures.However,MOFs are normally crystalline powders that cause multiple problems,such as dust,abrasion and heat/mass loss,as well as significant pressure drops on the adsorption bed resulting in a sudden stop in production.To solve these issues,we have prepared four different sphere-shaped adsorbents,including Mg-gallate,Co-gallate,MUV-10(Mn)and MIL-53(Al)using a calcium alginate method to achieve excellent ethylene/ethane separation performance.The performance of the sphere-shaped adsorbents has been validated using mechanical strength measurements,powder X-ray diffraction,scanning electron microscopy,thermogravimetric analysis,gas adsorption isotherms and dynamic breakthrough experiments.The excellent mechanical strength of these sphere-shaped adsorbents meets the criteria for industrial application in gas separation.Thus,the energy consumption and operating cost will be further reduced in the ethylene production process.We believe that this shaping method will open a prosperous route to the development of MOFs toward higher technology levels and their commercial application.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The coherence is a measure for the accuracy of the interferometric phase, and the synthetic aperture radar (SAR) inter- ferometric coherence is affected by several sources of the decor- relation noise. For the circular SAR (CSAR) imaging geometry, the system response function is in the form of the Bessel function which brings a high sidelobe, and the high sidelobe of CSAR will be an important factor influencing the interferometric coherence. The effect of the high sidelobe on the coherence is analyzed and deduced. Based on the interferometric characteristics of the slight difference in the viewing angles and the potential pixel off- set in the interferometric SAR (InSAR) images, a relation between the radar impulse response and the coherence loss function is derived. From the relational model, the coherence loss function due to the high sidelobe of CSAR is then deduced, and compared with that of the conventional SAR. It is shown that the high sidelobe of CSAR focusing signal will severely affect the baseline decorre- lation and coregistration decorrelation. Simulation results confirm the theoretical analysis and quantitatively show the baseline and coregistration decorrelation degradation due to the high sidelobes of CSAR.
基金Supported by National Natural Science Foundation of China(No.21136007,No.51302184)the National Research Fund for Fundamental Key Projects(No.2014CB260402)
文摘Two isomeric metal-organic frameworks(MOFs) with 2-dimensional(2D) and 3-dimensional(3D) topologies both comprised of Cu(Ⅱ) and OTf(OTf = trifluoromethanesulfonate) ions were synthesized and characterized.The CO_2,CH_4 and N_2 adsorption properties of the two isomeric MOFs were investigated from 263 K to 298 K at0.1 MPa.The results showed that the 2D MOF exhibited a higher selectivity for CO_2 from CO_2/CH_4 and CH_4from CH_4/N_2 compared to the 3D MOF,even though it possessed a lower surface area and pore volume.The higher adsorption heats of gases on the 2D MOF inferred the strong adsorption potential energy in the layered MOFs.Dynamic separation experiments using CO_2/CH_4 and CH_4/N_2 mixtures on the two MOFs proved that the2 D MOF had a longer elution time than the 3D MOF as well as better separation abilities.
基金supported by the National Nature Science Foundation of China (Grant No. 81201644 and 81572858)National Key Clinical Specialist Construction Programs of China (Grant No. 2013-544)
文摘Objective:Hepatocellular carcinoma(HCC)is a common malignancy associated with high morbidity and mortality rates worldwide.Early diagnosis plays an important role in the improvement of HCC prognosis.Methods:In this study,we conducted a comprehensive analysis of HCC DNA methylation and gene expression datasets in The Cancer Genome Atlas(TCGA),to identify a prognostic signature for HCC diagnosis and survival prediction.First,we identified differential methylation CpG(dmCpG)sites in HCC samples and compared them with those in adjacent normal liver tissues;this was followed by univariate analysis and Sure Independence Screening(SIS)in the training set.The robustness of the identified prognostic signature was evaluated using the testing set.To explore the biological processes involved in HCC progression,we also performed functional enrichment analysis for overlapping genes between genes containing dmCpG sites(DMGs)and differential expression genes(DEGs)in HCC patients,using data from the Database for Annotation,Visualization,and Integrated Discovery(DAVID).Results:As a result,we identified five CpG sites that were significantly associated with HCC survival through univariate analysis and SIS.Univariate analysis of clinical characteristics identified age and risk factors(including alcohol consumption and smoking)as independent factors that indicated HCC survival.Multivariate analysis indicated that the integrated prognostic signature(weighted combination of the five CpG sites)that took age and risk factors into consideration resulted in more accurate survival prediction.Conclusions:This study provides a novel signature for predicting HCC survival,and should be helpful for early HCC diagnosis and personalized treatment.
基金The Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes under contract No.2019J00010the National Key Research and Development Program of China under contract No.2017YFA0604901+2 种基金the National Natural Science Foundation of China under contract Nos 41806005,41676014 and 41776183the Public Welfare Technical Applied Research Project of Zhejiang Province of China under contract No.LGF19D060003the Science and Technology Project of Zhoushan City under contract No.2019C21008
文摘Gaofen-3(GF-3),a Chinese civil synthetic aperture radar(SAR)at C-band,has operated since August 2016.Remarkably,several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study,six images acquired in Global Observation(GLO)and Wide ScanSAR(WSC)modes at verticalvertical(VV)polarization channel are discussed.This work focuses on investigating the observation of rainfall using GF-3 SAR.These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF),significant wave height simulated from the WAVEWATCH-III(WW3)model,sea surface currents from climate forecast system version 2(CFSv2)of the National Centers for Environmental Prediction(NCEP)and rain rate data from the Tropical Rainfall Measuring Mission(TRMM)satellite.Sea surface roughness,was compared with the normalized radar cross section(NRCS)from SAR observations,and indicated a 0.8 correlation(COR).We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height.It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15°to 30°,while it enhances the radar signal at incidence angles ranging from 30°to 45°and incidence angles smaller than 10°.This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.
基金This work was supported by the National Natural Science Foundation of China(Grant No.31801117 to Dr.X.Li and 82073287 to Dr.Zhang)the Program for Changjiang Scholars and Innovative Research Team in University in China(Grant No.IRT_14R40 to Dr.K.Chen)the Chinese National Key Research and Development Project(Grant No.2018YFC1315601).
文摘Objective:Large volume radiological text data have been accumulated since the incorporation of electronic health record(EHR)systems in clinical practice.We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis.Methods:Sonographic EHR data were obtained from the EHR database.Pathological reports were used as the gold standard for diagnosing thyroid cancer.We developed thyroid cancer diagnosis based on natural language processing(THCaDxNLP)to interpret unstructured sonographic text reports for thyroid cancer diagnosis.We used the area under the receiver operating characteristic curve(AUROC)as the primary metric to measure the performance of the THCaDxNLP.We compared the performance of thyroid ultrasound radiologists aided with THCaDxNLP vs.those without THCaDxNLP using 5 independent test sets.Results:We obtained a total number of 788,129 sonographic radiological reports.The number of thyroid sonographic data points was 132,277,18,400 of which were thyroid cancer patients.Among the 5 test sets,the numbers of patients per set were 439,186,82,343,and 171.THCaDxNLP achieved high performance in identifying thyroid cancer patients(the AUROC ranged from 0.857–0.932).Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without THCaDxNLP in terms of accuracy(93.8%vs.87.2%;one-sided t-test,adjusted P=0.003),precision(92.5%vs.86.0%;P=0.018),and F1 metric(94.2%vs.86.4%;P=0.007).Conclusions:THCaDxNLP achieved a high AUROC for the identification of thyroid cancer,and improved the accuracy,sensitivity,and precision of thyroid ultrasound radiologists.This warrants further investigation of THCaDxNLP in prospective clinical trials.
基金This study is supported by the National Nature Science Foundation of China(81101432 and 81272036).
文摘Keloids are a notorious fibroproliferative disorder that may cause cosmetic concerns and life inconvenience.Various methods such as surgery,injection,and laser have been used;however,single treatments are at risk of recurrence;therefore,comprehensive therapy is the better solution.Here,we focused on the management of different medical interventions according to subjective and objective conditions of keloid patients and summarized several clinical comprehensive strategies based on our clinical experience.One original concept of laser combined with radiotherapy was also introduced as a promising method,especially for wide-based pathological scars.