Through multi-order structure function analysis and singularity measurement,the Hurst index and intermittent parameter are obtained to quantitatively describe the characteristics of atmospheric disturbance based on th...Through multi-order structure function analysis and singularity measurement,the Hurst index and intermittent parameter are obtained to quantitatively describe the characteristics of atmospheric disturbance based on the round-trip intelligent sounding system(RTISS)in the lower-middle stratosphere.According to the third-order structure function,small-scale gravity waves are classified into three states:stable,unstable,and accompanied by turbulence.The evolution of gravity waves is reflected by the variation of the third-order structure function over time,and the generation of turbulence is also observed.The atmospheric disturbance intensity parameter RT is defined in this paper and contains both wave disturbance(H_(1))and random intermittency(C_(1)).RT is considered to reflect the characteristics of atmospheric disturbance more reasonably than either of the above two alone.In addition,by obtaining the horizontal wavenumber spectrum from the flat-floating stage and the vertical wavenumber spectrum from the ascending and descending stages at the height range of18-24 km,we found that when the gravity wave activity is significantly enhanced in the horizontal direction,the amplitude of the vertical wavenumber spectrum below is significantly larger,which shows a significant impact of gravity wave activity on the atmospheric environment below.展开更多
Unmanned Aerial Vehicle(UAV)tracking has been possible because of the growth of intelligent information technology in smart cities,making it simple to gather data at any time by dynamically monitoring events,people,th...Unmanned Aerial Vehicle(UAV)tracking has been possible because of the growth of intelligent information technology in smart cities,making it simple to gather data at any time by dynamically monitoring events,people,the environment,and other aspects in the city.The traditional filter creates a model to address the boundary effect and time filter degradation issues in UAV tracking operations.But these methods ignore the loss of data integrity terms since they are overly dependent on numerous explicit previous regularization terms.In light of the aforementioned issues,this work suggests a dual-domain Jensen-Shannon divergence correlation filter(DJSCF)model address the probability-based distance measuring issue in the event of filter degradation.The two-domain weighting matrix and JS divergence constraint are combined to lessen the impact of sample imbalance and distortion.Two new tracking models that are based on the perspectives of the actual probability filter distribution and observation probability filter distribution are proposed to translate the statistical distance in the online tracking model into response fitting.The model is roughly transformed into a linear equality constraint issue in the iterative solution,which is then solved by the alternate direction multiplier method(ADMM).The usefulness and superiority of the suggested strategy have been shown by a vast number of experimental findings.展开更多
Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and...Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.展开更多
Carbon-based anode materials are widely used in various battery energy storage systems due to their low cost,wide source,high conductivity and easy morphology control.However,current commercially available anode mater...Carbon-based anode materials are widely used in various battery energy storage systems due to their low cost,wide source,high conductivity and easy morphology control.However,current commercially available anode materials as active materials for lithium-/sodium-ion batteries generally suffer from large volume changes and poor rate performance.In response,we synthesized defect-rich N,S co-doped two dimensional(2D)nanosheet-assembled porous carbon microspheres(N,S-PCS)via simple hydrothermal,carbonization and etching process based on the principle of Schiff base reaction.The N,S-PCS structure is thus constructed by removing Fe7S8 nanoparticles from the carbon skeleton to form porous microspheres with N,S doping.Therefore,the micromorphology characteristic,pore structure and electroconductivity of carbon materials are effectively optimized via heteroatom doping and surface engineering.As expected,the prepared N,S-PCS electrodes exhibit excellent electrochemical performance in both lithium-ion and sodium-ion batteries.For lithium-ion batteries,it achieves reversible capacities of 1045 and 237 mAh g^(-1) at 0.1 and 20 A g^(-1),respectively.For sodium-ion batteries,it shows good cycling stability with a capacity of 157 mAh g^(-1) after 500 cycles at 1 A g^(-1).Experimental and theoretical calculation results confirm that the N,S co-doping strategies help to improve the structural stability,shorten the ion diffusion paths,and promote the reaction kinetics,thus achieving excellent electrochemical performance.This work is instructive for the practical application of nonmetal doping functionalized porous carbon structures for metal-ion batteries.展开更多
锂离子电容器(LICs)是一种很有前途的储能装置,因为它们同时具有锂离子电池的高能量密度和超级电容器的高功率密度的特点.然而,由于锂离子电容器中阳极和阴极之间电化学反应动力学的不匹配使得探索具有快速离子扩散和电子转移通道的阳...锂离子电容器(LICs)是一种很有前途的储能装置,因为它们同时具有锂离子电池的高能量密度和超级电容器的高功率密度的特点.然而,由于锂离子电容器中阳极和阴极之间电化学反应动力学的不匹配使得探索具有快速离子扩散和电子转移通道的阳极材料面临挑战.在此,通过静电纺丝策略将具有可控末端基团的二维Ti_(3)C_(2)MXene引入一维碳纳米纤维中,形成三维导电网络.在这种Ti_(3)C_(2)MXene和碳基复合材料(称为KTi-400@CNFs)中,二维纳米片结构赋予了Ti_(3)C_(2)MXene更多Li+存储活性位点,而碳骨架则有利于提高复合材料的导电性.更值得一提的是,在Ti_(3)C_(2)MXene和碳骨架的界面上形成了Ti–O–C键.复合材料中的这种化学键为电子的快速传输和离子在层与层之间纵向的快速扩散建立了桥梁.因此,优化后的KTi-400@CNFs复合材料在电流密度为5 A g-1的情况下,500次循环后仍保持235 mA h g-1的良好容量.由KTi-400@CNFs//AC组成的锂离子电容器实现了高能量密度(114.3 W h kg-1)和高功率密度(12.8 kW kg-1).KTi-400@CNFs的这种独特结构和优异的电化学性能为二维材料制备提供了参考.展开更多
Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated defor...Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown.Here,we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope.The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores.The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region,greatly enhancing GB diffusion in the bicrystal ligament.Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.展开更多
We study the application of BCFW recursion relations to the QED process 0→e^(-)e^(+)nγ.Based on 6-point amplitudes(both MHVA and NMHVA)computed from Feynman diagrams in the Berends-Giele gauge,we conduct a comprehen...We study the application of BCFW recursion relations to the QED process 0→e^(-)e^(+)nγ.Based on 6-point amplitudes(both MHVA and NMHVA)computed from Feynman diagrams in the Berends-Giele gauge,we conduct a comprehensive study on different shifts.Subsequently,we propose a new shift(LLYZ shift),which can lead to the full amplitudes of these processes and have several realistic computational advantages.We compare the number of terms and independent amplitudes of this novel shift with those of a few typical shifts.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41875045)the National Key Research and Development Project(2018YFC1506200)+1 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(CX20210056)the support provided by"Western Light"Cross-Team Project of Chinese Academy of Sciences,Key Laboratory Cooperative Research Project。
文摘Through multi-order structure function analysis and singularity measurement,the Hurst index and intermittent parameter are obtained to quantitatively describe the characteristics of atmospheric disturbance based on the round-trip intelligent sounding system(RTISS)in the lower-middle stratosphere.According to the third-order structure function,small-scale gravity waves are classified into three states:stable,unstable,and accompanied by turbulence.The evolution of gravity waves is reflected by the variation of the third-order structure function over time,and the generation of turbulence is also observed.The atmospheric disturbance intensity parameter RT is defined in this paper and contains both wave disturbance(H_(1))and random intermittency(C_(1)).RT is considered to reflect the characteristics of atmospheric disturbance more reasonably than either of the above two alone.In addition,by obtaining the horizontal wavenumber spectrum from the flat-floating stage and the vertical wavenumber spectrum from the ascending and descending stages at the height range of18-24 km,we found that when the gravity wave activity is significantly enhanced in the horizontal direction,the amplitude of the vertical wavenumber spectrum below is significantly larger,which shows a significant impact of gravity wave activity on the atmospheric environment below.
基金supported by the National Natural Science Foundation of China under Grant 62072256Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY221057,NY220003).
文摘Unmanned Aerial Vehicle(UAV)tracking has been possible because of the growth of intelligent information technology in smart cities,making it simple to gather data at any time by dynamically monitoring events,people,the environment,and other aspects in the city.The traditional filter creates a model to address the boundary effect and time filter degradation issues in UAV tracking operations.But these methods ignore the loss of data integrity terms since they are overly dependent on numerous explicit previous regularization terms.In light of the aforementioned issues,this work suggests a dual-domain Jensen-Shannon divergence correlation filter(DJSCF)model address the probability-based distance measuring issue in the event of filter degradation.The two-domain weighting matrix and JS divergence constraint are combined to lessen the impact of sample imbalance and distortion.Two new tracking models that are based on the perspectives of the actual probability filter distribution and observation probability filter distribution are proposed to translate the statistical distance in the online tracking model into response fitting.The model is roughly transformed into a linear equality constraint issue in the iterative solution,which is then solved by the alternate direction multiplier method(ADMM).The usefulness and superiority of the suggested strategy have been shown by a vast number of experimental findings.
基金supported by the Natural Science Foundation of Zhejiang Province(Nos.LQ21F020021 and LZ21F020008)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)the Research Start-up Project funded by Hangzhou Normal University(No.2020QD2035).
文摘Service recommendation provides an effective solution to extract valuable information from the huge and ever-increasing volume of big data generated by the large cardinality of user devices.However,the distributed and rich multi-source big data resources raise challenges to the centralized cloud-based data storage and value mining approaches in terms of economic cost and effective service recommendation methods.In view of these challenges,we propose a deep neural collaborative filtering based service recommendation method with multi-source data(i.e.,NCF-MS)in this paper,which adopts the cloud-edge collaboration computing paradigm to build recommendation model.More specifically,the Stacked Denoising Auto Encoder(SDAE)module is adopted to extract user/service features from auxiliary user profiles and service attributes.The Multiple Layer Perceptron(MLP)module is adopted to integrate the auxiliary user/service features to train the recommendation model.Finally,we evaluate the effectiveness of the NCF-MS method on three public datasets.The experimental results show that our proposed method achieves better performance than existing methods.
基金supported by the National Natural Science Foundation of China(21905152 and 52302273)the Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province+2 种基金the Taishan Scholar Project of Shandong Province of China(tsqn202211160 and tsqn202312199)the China Postdoctoral Science Foundation(2022M713249)the Shandong Provincial Natural Science Foundation of China(ZR2023QE176)。
文摘Carbon-based anode materials are widely used in various battery energy storage systems due to their low cost,wide source,high conductivity and easy morphology control.However,current commercially available anode materials as active materials for lithium-/sodium-ion batteries generally suffer from large volume changes and poor rate performance.In response,we synthesized defect-rich N,S co-doped two dimensional(2D)nanosheet-assembled porous carbon microspheres(N,S-PCS)via simple hydrothermal,carbonization and etching process based on the principle of Schiff base reaction.The N,S-PCS structure is thus constructed by removing Fe7S8 nanoparticles from the carbon skeleton to form porous microspheres with N,S doping.Therefore,the micromorphology characteristic,pore structure and electroconductivity of carbon materials are effectively optimized via heteroatom doping and surface engineering.As expected,the prepared N,S-PCS electrodes exhibit excellent electrochemical performance in both lithium-ion and sodium-ion batteries.For lithium-ion batteries,it achieves reversible capacities of 1045 and 237 mAh g^(-1) at 0.1 and 20 A g^(-1),respectively.For sodium-ion batteries,it shows good cycling stability with a capacity of 157 mAh g^(-1) after 500 cycles at 1 A g^(-1).Experimental and theoretical calculation results confirm that the N,S co-doping strategies help to improve the structural stability,shorten the ion diffusion paths,and promote the reaction kinetics,thus achieving excellent electrochemical performance.This work is instructive for the practical application of nonmetal doping functionalized porous carbon structures for metal-ion batteries.
基金supported by the National Natural Science Foundation of China (22005167 and 21905152)Shandong Provincial Natural Science Foundation (ZR2020QB125 and ZR2020MB045)+2 种基金China Postdoctoral Science Foundation (2021M693256, 2021T140687 and 2022M713249)Qingdao Postdoctoral Applied Research Project, Taishan Scholar Project of Shandong Province (ts20190937)the Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province。
文摘锂离子电容器(LICs)是一种很有前途的储能装置,因为它们同时具有锂离子电池的高能量密度和超级电容器的高功率密度的特点.然而,由于锂离子电容器中阳极和阴极之间电化学反应动力学的不匹配使得探索具有快速离子扩散和电子转移通道的阳极材料面临挑战.在此,通过静电纺丝策略将具有可控末端基团的二维Ti_(3)C_(2)MXene引入一维碳纳米纤维中,形成三维导电网络.在这种Ti_(3)C_(2)MXene和碳基复合材料(称为KTi-400@CNFs)中,二维纳米片结构赋予了Ti_(3)C_(2)MXene更多Li+存储活性位点,而碳骨架则有利于提高复合材料的导电性.更值得一提的是,在Ti_(3)C_(2)MXene和碳骨架的界面上形成了Ti–O–C键.复合材料中的这种化学键为电子的快速传输和离子在层与层之间纵向的快速扩散建立了桥梁.因此,优化后的KTi-400@CNFs复合材料在电流密度为5 A g-1的情况下,500次循环后仍保持235 mA h g-1的良好容量.由KTi-400@CNFs//AC组成的锂离子电容器实现了高能量密度(114.3 W h kg-1)和高功率密度(12.8 kW kg-1).KTi-400@CNFs的这种独特结构和优异的电化学性能为二维材料制备提供了参考.
基金supported by the National Natural Science Foundation of China(Nos.52173224,52130105,and 51821001)Natural Science Foundation of Shanghai(No.21ZR1431200)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning.
文摘Grain boundaries(GBs),as a prevalent structural characteristic,play a crucial role in the deformation of nanoporous metals with nanosized grains and ligaments.However,the fundamental understanding of GB-mediated deformation is still lacking because the plastic behavior of discrete ligaments involving GBs remains to be unknown.Here,we report atomic scale visualizations of coupled GB dislocation climb and glide in nanoporous gold ligaments with low-angle GBs via in situ tensile straining inside a Cs-corrected transmission electron microscope.The zig-zag motion paths of GB dislocations are precisely determined by real-time tracking of the movements of dislocation cores.The concurrent climb and glide of the dislocation arrays are confined to a narrow GB region,greatly enhancing GB diffusion in the bicrystal ligament.Our findings of coupled dislocation climb and glide shine a light on the room-temperature deformation of nanoporous metals and provide a time-dependent atomic-level physical image for GB engineering.
基金Supported by the Natural Science Foundation of China (11475180, 11875260)Supported by the Italian Ministry of Research (MUR)(PRIN20172LNEEZ)
文摘We study the application of BCFW recursion relations to the QED process 0→e^(-)e^(+)nγ.Based on 6-point amplitudes(both MHVA and NMHVA)computed from Feynman diagrams in the Berends-Giele gauge,we conduct a comprehensive study on different shifts.Subsequently,we propose a new shift(LLYZ shift),which can lead to the full amplitudes of these processes and have several realistic computational advantages.We compare the number of terms and independent amplitudes of this novel shift with those of a few typical shifts.