We propose the finite-size scaling of correlation functions in finite systems near their critical points.At a distance r in a ddimensional finite system of size L,the correlation function can be written as the product...We propose the finite-size scaling of correlation functions in finite systems near their critical points.At a distance r in a ddimensional finite system of size L,the correlation function can be written as the product of|r|^(-(d-2+η))and a finite-size scaling function of the variables r/L and tL^(1/ν),where t=(T-T_c)/T_c,ηis the critical exponent of correlation function,andνis the critical exponent of correlation length.The correlation function only has a sigificant directional dependence when|r|is compariable to L.We then confirm this finite-size scaling by calculating the correlation functions of the two-dimensional Ising model and the bond percolation in two-dimensional lattices using Monte Carlo simulations.We can use the finite-size scaling of the correlation function to determine the critical point and the critical exponentη.展开更多
Emergence refers to the existence or formation of collective behaviors in complex systems.Here,we develop a theoretical framework based on the eigen microstate theory to analyze the emerging phenomena and dynamic evol...Emergence refers to the existence or formation of collective behaviors in complex systems.Here,we develop a theoretical framework based on the eigen microstate theory to analyze the emerging phenomena and dynamic evolution of complex system.In this framework,the statistical ensemble composed of M microstates of a complex system with N agents is defined by the normalized N×M matrix A,whose columns represent microstates and order of row is consist with the time.The ensemble matrix A can be decomposed as■,where r=min(N,M),eigenvalueσIbehaves as the probability amplitude of the eigen microstate U_I so that■and U_I evolves following V_I.In a disorder complex system,there is no dominant eigenvalue and eigen microstate.When a probability amplitudeσIbecomes finite in the thermodynamic limit,there is a condensation of the eigen microstate UIin analogy to the Bose–Einstein condensation of Bose gases.This indicates the emergence of U_I and a phase transition in complex system.Our framework has been applied successfully to equilibrium threedimensional Ising model,climate system and stock markets.We anticipate that our eigen microstate method can be used to study non-equilibrium complex systems with unknown orderparameters,such as phase transitions of collective motion and tipping points in climate systems and ecosystems.展开更多
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZD-SSW-SYS019)received a postdoctoral fellowship funded by the KunmingUniversity of Science and Technology
文摘We propose the finite-size scaling of correlation functions in finite systems near their critical points.At a distance r in a ddimensional finite system of size L,the correlation function can be written as the product of|r|^(-(d-2+η))and a finite-size scaling function of the variables r/L and tL^(1/ν),where t=(T-T_c)/T_c,ηis the critical exponent of correlation function,andνis the critical exponent of correlation length.The correlation function only has a sigificant directional dependence when|r|is compariable to L.We then confirm this finite-size scaling by calculating the correlation functions of the two-dimensional Ising model and the bond percolation in two-dimensional lattices using Monte Carlo simulations.We can use the finite-size scaling of the correlation function to determine the critical point and the critical exponentη.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZD-SSW-SYS019)。
文摘Emergence refers to the existence or formation of collective behaviors in complex systems.Here,we develop a theoretical framework based on the eigen microstate theory to analyze the emerging phenomena and dynamic evolution of complex system.In this framework,the statistical ensemble composed of M microstates of a complex system with N agents is defined by the normalized N×M matrix A,whose columns represent microstates and order of row is consist with the time.The ensemble matrix A can be decomposed as■,where r=min(N,M),eigenvalueσIbehaves as the probability amplitude of the eigen microstate U_I so that■and U_I evolves following V_I.In a disorder complex system,there is no dominant eigenvalue and eigen microstate.When a probability amplitudeσIbecomes finite in the thermodynamic limit,there is a condensation of the eigen microstate UIin analogy to the Bose–Einstein condensation of Bose gases.This indicates the emergence of U_I and a phase transition in complex system.Our framework has been applied successfully to equilibrium threedimensional Ising model,climate system and stock markets.We anticipate that our eigen microstate method can be used to study non-equilibrium complex systems with unknown orderparameters,such as phase transitions of collective motion and tipping points in climate systems and ecosystems.