期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Recent advance in synthesis and application of heteroatom zeolites 被引量:4
1
作者 Tingting Pang Xuanyu Yang +5 位作者 Chenyi Yuan Ahmed A.Elzatahry Abdulaziz Alghamdi Xing He xiaowei cheng Yonghui Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期328-338,共11页
Incorporation of heteroatoms into the framewo rk of zeolites has become a significant strategy to improve their performance in catalysis and adsorption,because the obtained heteroatom zeolites exhibit quite different ... Incorporation of heteroatoms into the framewo rk of zeolites has become a significant strategy to improve their performance in catalysis and adsorption,because the obtained heteroatom zeolites exhibit quite different properties from the conventional aluminosilicate zeolites in aspects of surface acidity,pore structures,particle size and so on.In this review,the progress on the heteroatom zeolites including their synthesis and application is highlighted.First,the recent advance on the design and synthesis of different heteroatom zeolites is summarized.Special emphasis is placed on the introduction and comparison of three typical methods,including the direct synthesis,post synthesis and improved direct synthesis,for the traditional heteroatom zeolites(such as TS-1,Sn-MFI,Sn-β) and newly-reported heteroatom zeolites(such as W-MFI,Mo-MFI).According to their intrinsic characteristics,the application of heteroatom zeolites in diverse fields,such as production of fine chemicals,air pollution control and biomass conversion is then discussed.Finally,the challenges and perspective on the future development of heteroatom zeolites in low-cost preparation and practical application are proposed. 展开更多
关键词 Heteroatom zeolite Incorporation Tetrahedral coordination Research status SYNTHESIS Application PROSPECTIVE
原文传递
Recyclable Fenton-like catalyst based on zeolite Y supported ultrafine,highly-dispersed Fe_2O_3 nanoparticles for removal of organics under mild conditions 被引量:4
2
作者 Xuanyu Yang xiaowei cheng +3 位作者 Ahmed A.Elzatahry Jinyang Chen Abdulaziz Alghamdi Yonghui Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第2期324-330,共7页
A versatile wet impregnation method was employed to conveniently and controllably deposit Fe_2O_3 nanoparticles on zeolites including commercial Y, mordenite and ZSM-5 with the similar framework Si/Al ratios and cryst... A versatile wet impregnation method was employed to conveniently and controllably deposit Fe_2O_3 nanoparticles on zeolites including commercial Y, mordenite and ZSM-5 with the similar framework Si/Al ratios and crystal sizes, respectively. The ultrafine Fe_2O_3 nanoparticles in size of 5 nm can be highly dispersed on zeolite Y matrix due to its much better wettability than ZSM-5 and mordenite. By using the obtained Fe_2O_3/zeolite composite as the heterogeneous Fenton-like catalysts, the degradation of phenol as a model reaction was systematically investigated, including the zeolite supports, particle size and dispersion of Fe_2O_3, and reaction conditions of H_2O_2 concentration, temperature, and pH value. The catalyst based on zeolite Y with Fe loading of 9% exhibited the best phenol degradation efficiency (> 90%)in neutral pH within 2 h. Its high catalytic activity in Fenton reaction can be attributed to the bifunctional properties of strong surface BrФnsted acidity and high reactivity of octahedral Fe^(3+) in the highlydispersed ultrafine Fe_2O_3 nanoparticles in size of 5 nm, which were the primary active centers to quickly decompose H_2O_2 into hydroxyl radicals. Since phenol degradation can be performed under mild conditions of ambient temperature (283-323 K) and a wide pH range (4.0-7.0), the catalysts can be easily recovered for recyclable use with stable degradation activity, which own the immense potential in deep treatment of organic pollutants in industrial wastewater. 展开更多
关键词 FENTON-LIKE reaction Zeolite Fe2O3 NANOPARTICLES Highly-dispersed Phenol degradation
原文传递
Sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres as magnetically recyclable solid acid catalysts 被引量:3
3
作者 Chenyi Yuan Xiqing Wang +4 位作者 Xuanyu Yang Abdulaziz AAlghamdi Fahad AAlharthi xiaowei cheng Yonghui Deng 《Chinese Chemical Letters》 CSCD 2021年第6期2079-2085,共7页
Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspher... Green and recyclable solid acid catalysts are in urgent demand as a substitute for conventional liquid mineral acids.In this work,a series of novel sulfonic acid-functionalized core-shell Fe_(3)O_(4)@carbon microspheres(Fe_(3)O_(4)@C-SO_(3)H)have been designed and synthesized as an efficient and recyclable heterogeneous acid catalyst.For the synthesis,core-shell Fe_(3)O_(4)@RF(resorcinol-formaldehyde)microspheres with tunable shell thickness were achieved by interfacial polymerization on magnetic Fe_(3)O_(4)microspheres.After high-temperature carbonization,the microspheres were eventually treated by surface sulfonation,re sulting in Fe_(3)O_(4)@C-x-SO_(3)H(x stands for carbonization temperature)microspheres with abundant surface SO_(3)H groups.The obtained microspheres possess uniform core-shell structure,partially-graphitized carbon skeletons,superparamagnetic property,high magnetization saturation value of 10.6 emu/g,and rich SO_(3)H groups.The surface acid amounts can be adju sted in the range of 0.59-1.04 mmol/g via sulfonation treatment of carbon shells with different graphitization degrees.The magnetic Fe_(3)O_(4)@C-x-SO_(3)H microspheres were utilized as a solid acid catalyst for the acetalization reaction between benzaldehyde and ethylene glycol,demonstrating high selectivity(97%)to benzaldehyde ethylene glycol acetal.More importantly,by applying an external magnetic field,the catalysts can be easily separated from the heterogeneous reaction solutions,which later show well preserved catalytic activity even after 9 cycles,revealing good recyclability and high stability. 展开更多
关键词 CORE-SHELL Fe_(3)O_(4)@carbon Interfacial polymerization Magnetic microspheres RECYCLABILITY Solid acid catalyst Sulfonic acid-functionalization
原文传递
One-dimensional nanochains consisting of magnetic core and mesoporous aluminosilicate for use as efficient nanocatalysts 被引量:1
4
作者 Tong Zhang Qin Yue +6 位作者 Panpan Pan Yuan Ren Xuanyu Yang xiaowei cheng Fahad A.Alharthi Abdulaziz A.Alghamdi Yonghui Deng 《Nano Research》 SCIE EI CSCD 2021年第11期4197-4203,共7页
Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembl... Magnetic assembly at the nanoscale level brings potential possibilities in obtaining novel delicate nanostructures with unique physical, photonic or electronic properties. Interface surfactant micelle-directed assembly strategy holds great promising in fabricating ordered mesoporous materials with multifunctionality and pore parameter tunability. Combing these, herein, one-dimensional (1D) nanochains with well-aligned silica-coated magnetic particles as core and mesoporous aluminosilicate as shell are rational fabricated for the first time through magnetic field induced interface coassembly in biliquid system followed by the incorporation of Al species via in-situ chemical modification and transformation strategy. The obtained magnetic mesoporous aluminosilicate nanochains (MMAS-NCs) possess well-defined core-shell-shell sandwich nanostructure, tunable perpendicular mesopore channels in the shell (2.7–7.6 nm), high surface area (359 m^(2)·g^(-1)), abundant acidic sites, and superparamagnetism with a magnetization saturation of 13.8 emu·g^(-1). Thanks to the unique properties, the MMAS-NCs exhibit excellent performance in acting as magnetically recyclable superior solid acid catalysts and nanostirrers with high conversion of over 96.8%, selectivity of 95.0% in the deprotection reaction of benzaldehyde dimethylacetal to benzaldehyde. Moreover, MMAS-NCs exhibit an interesting pore size effect on the catalytic activity, namely, in the pore size range of 2–8 nm, the catalysts with larger pores show significantly enhanced catalytic activity due to the balanced mass transport and density of surface active sites. 展开更多
关键词 nanochain mesoporous materials magnetic particle acid catalysis ALUMINOSILICATE
原文传递
Targeted heat treatment of additively manufactured Ti-6Al-4V for controlled formation of Bi-lamellar microstructures 被引量:1
5
作者 Cecilie V.Funch Alessandro Palmas +6 位作者 Kinga Somlo Emilie H.Valente xiaowei cheng Konstantinos Poulios Matteo Villa Marcel A.J.Somers Thomas L.Christiansena 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第22期67-76,共10页
Laser powder bed fusion(L-PBF)was utilized to produce specimens in Ti-6Al-4V,which were subjected to a bi-lamellar heat treatment,which produces microstructures consisting of primary α-lamellae and a fine secondary ... Laser powder bed fusion(L-PBF)was utilized to produce specimens in Ti-6Al-4V,which were subjected to a bi-lamellar heat treatment,which produces microstructures consisting of primary α-lamellae and a fine secondary α-phase inside the inter-lamellar β-regions.The bi-lamellar microstructure was obtained as(i)a direct bi-lamellar heat treatment from the asbuilt condition or(ii)a bi-lamellar heat treatment preceded by a β-homogenization.For the bi-lamellar treatment with β-homogenization,cooling rates in the range 1-500 K/min were applied after homogenization in β-region followed by inter-critical annealing in the α+β region at various temperatures in the range 850-950℃.The microstructures were characterized using various microscopical techniques.Mechanical testing with Vickers hardness indentation and tensile testing was performed.The bi-lamellar microstructure was harder when compared to a soft fully lamellar microstructure,because of the presence of fine α-platelets inside the β-lamellae.Final low temperature ageing provided an additional hardness increase by precipitation hardening of the primary α-regions.The age hardened bi-lamellar microstructure shows a similar hardness as the very fine,as-built martensitic microstructure.The bi-lamellar microstructure has more favorable mechanical properties than the as-built condition,which has high strength,but poor ductility.After the bi-lamellar heat treatment,the elongation was improved by more than 250%.Due to the very high strength of the as-built condition,loss of tensile strength is unavoidable,resulting in a reduction of tensile strength of~18%. 展开更多
关键词 Additive manufacturing TI-6AL-4V Targeted heat treatment Bi-lamellar microstructures Laser powder bed fusion
原文传递
Li-ion charge storage performance of wood-derived carbon fibers@MnO as a battery anode 被引量:1
6
作者 Qinyuan Huang Jinbo Hu +6 位作者 Mei Zhang Mengxiao Li Ting Li Guangming Yuan Yuan Liu Xiang Zhang xiaowei cheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期1091-1094,共4页
Wood-derived carbons have been demonstrated to have large specific capacities as the anode materials of lithium-ion batteries(LIBs). However, these carbons generally show low tap density and minor volumetric capacity ... Wood-derived carbons have been demonstrated to have large specific capacities as the anode materials of lithium-ion batteries(LIBs). However, these carbons generally show low tap density and minor volumetric capacity because of high specific surface area and pore volume. Combination with metal oxide is one of the expected methods to alleviate the obstacles of wood-derived carbons. In this work, the composites of Mn O loaded wood-derived carbon fibers(CF@Mn O) were prepared via a simple and environmentally friendly method, showing decreased specific surface area due to the generation of Mn O nanoparticles on carbon fibers. Furthermore, the CF@Mn O compostites exhibit superior electrochemical performance as anode materials of LIBs, which show high reversible capacity in the range of 529-734 m Ah/g at a current density of 100 m A/g. The optimal CF@Mn O product(Mn O:carbon = 1:2) delivers reversible capacity of 734 and 265.3 m Ah/g at current density of 100 and 2000 m A/g, respectively. Besides, the material presents outstanding stability with coulombic efficiency around 100% after 200 cycles at a high current density of 400 m A/g, revealing a potential as promising anode materials for high-performance LIBs. 展开更多
关键词 Wood-derived carbons Environmentally friendly MnO nanoparticles Anode materials Lithium-ion batteries
原文传递
Ordered porous metal oxide semiconductors for gas sensing 被引量:5
7
作者 Xinran Zhou xiaowei cheng +4 位作者 Yongheng Zhu Ahmed A. Elzatahry Abdulaziz Alghamdi Yonghui Deng Dongyuan Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第3期405-416,共12页
Among various gas sensing materials, metal oxide semiconductors have shown great potential as resistive type sensors. The ordered porous structural metal oxide semiconductors with well-defined meso- or macro-pores che... Among various gas sensing materials, metal oxide semiconductors have shown great potential as resistive type sensors. The ordered porous structural metal oxide semiconductors with well-defined meso- or macro-pores chemically synthesized via soft-templating method and nanocasting strategy have high porosity, highly interconnected pore channels and high surface area with enormous active sites for interacting with gaseous molecules. These features enable them good performance in gas sensing, including high sensitivity, fast response and recovery, good selectivity. This review gives a comprehensive summary about the porous metal oxides with focus on the synthesis methods, structure related properties, as well as the modification strategies for gas sensing improved performances. 展开更多
关键词 Porous materials Metal oxides Templating-synthesis Gas sensing
原文传递
Stepwise construction of Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and magnetic separability for efficient visible-light photocatalysis
8
作者 Zhijian Li Yao Wang +5 位作者 Ahmed A.Elzatahry Xuanyu Yang Shouzhi Pu Wei Luo xiaowei cheng Yonghui Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第6期1598-1602,共5页
Solid photocatalysts with high specific surface area,superior photoactivity and ease of recycling are highly desired in chemical process,water treatment and so on.In this study,a facile stepwise sol-gel coating approa... Solid photocatalysts with high specific surface area,superior photoactivity and ease of recycling are highly desired in chemical process,water treatment and so on.In this study,a facile stepwise sol-gel coating approach was utilized to synthesize Pt decorated oxygen-deficient mesoporous titania microspheres with core-shell structure and convenient magnetic separability(denoted as Fe3 O4@-SiO2@Pt/mTiO2-x).These photocatalysts consist of magnetic Fe3 O4 cores,nonporous insulating SiO2 middle layer and mesoporous anatase TiO2-x shell decorated by Pt nanoparticles(~3.5 nm)through wet impregnation and H2 reduction.As a result of high activity of oxygen-deficiency of black TiO2-x by H2 reduction and efficient inhibition of electron-hole recombination by Pt nanoparticles,the rationally designed core-shell Fe3 O4@SiO2@Pt/mTiO2-x photocatalysts exhibit superior photocatalytic performance in rhodamine B(RhB)degradation under visible light irradiation,with more than 98%of RhB degraded within 50 min.These core-shell structured photocatalysts show excellent recyclability under the assistance of magnetic separation with well-retained photocatalytic performance even after running five cycles.This stepwise synthesis method paves the way for the rational design of a high-efficiency recyclable heterogeneous catalyst,including photocatalysts,for various applications. 展开更多
关键词 CORE-SHELL Mesoporous TiO2 Photocatalytic activity Magnetic recovery Visible light
原文传递
Realizing translucency in aluminosilicate glass at ultralow temperature via cold sintering process
9
作者 Jie GAO Kangjing WANG +3 位作者 Wei LUO xiaowei cheng Yuchi FAN Wan JIANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第11期1714-1724,共11页
Glass with high visible-light transparency is widely considered as the most important optical material,which typically requires a processing temperature higher than 1000℃.Here,we report a translucent aluminosilicate ... Glass with high visible-light transparency is widely considered as the most important optical material,which typically requires a processing temperature higher than 1000℃.Here,we report a translucent aluminosilicate glass that can be prepared by cold sintering process(CSP)at merely 300℃.After eliminating structural pores in hexagonal faujasite(EMT)-type zeolite by heat treatment,the obtained highly active nanoparticles are consolidated to have nearly full density by adding NaOH solution as liquid aids.However,direct densification of EMT powder cannot remove the structural pores of zeolite completely,leading to an opaque compact after the CSP.It is proved that the chemical reaction between the NaOH-and zeolite-derived powders is highly beneficial to dissolution–precipitation process during sintering,leading to the ultra-low activation energy of 27.13 kJ/mol.Although the addition of 5 M NaOH solution greatly promotes the densification via the reaction with aluminosilicate powder,lower or higher concentration of solvent can deteriorate the transmittance of glass.Additionally,the CSP-prepared glass exhibits a Vickers hardness of 4.3 GPa,reaching 60%of the reported value for spark plasma sintering(SPS)-prepared sample. 展开更多
关键词 GLASS cold sintering process(CSP) optical properties mechanical properties
原文传递
Amphiphilic block copolymers directed synthesis of mesoporous nickel-based oxides with bimodal mesopores and nanocrystal-assembled walls
10
作者 Yuan Ren Xuanyu Yang +4 位作者 Xinran Zhou Wei Luo Yi Zhang xiaowei cheng Yonghui Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2019年第12期2003-2008,共6页
Mesoporous late-transition metal oxides have great potential in applications of energy,catalysis and chemical sensing due to their unique physical and chemical properties.However,their synthesis via the flexible and s... Mesoporous late-transition metal oxides have great potential in applications of energy,catalysis and chemical sensing due to their unique physical and chemical properties.However,their synthesis via the flexible and scalable soft-template method remain a great challenge,due to the weak organic-inorganic interaction between the frequently used surfactants(e.g.,Pluronic-type block copolymers) and metal oxide precursors,and the low crystallization temperature of metal oxides.In this study,ordered mesoporous NiO with dual mesopores,high surface area and well-interconnected crystalline porous frameworks have been successfully synthesized via the facile solvent evaporation-induced co-assembly(EICA) method,by using lab-made amphiphilic diblock copolymer polystyrene-b-poly(4-vinylpyridine)(PS-b-P4 VP) as both the structure-directing agent(the soft template) and macromolecular chelating agents for nickel species,THF as the solvent,and nickel acetylacetonate(Ni(acac)2) as inorganic precursor.Similarly,by using Ni(acac)2 and Fe(acac)3 as the binary precursors,ordered mesoporous Fedoped NiO materials can be obtained,which have bimodal mesopores of large mesopores(32.5 nm) and secondary mesopores(4.0-11.5 nm) in the nanocrystal-assembled walls,high specific surface areas(~74.8 m^2/g) and large pore value(~0.167 cm^3/g).The obtained mesoporous Fe-doped NiO based gas sensor showed superior ethanol sensing performances with good sensitivity,high selectivity and fast response-recovery dynamics. 展开更多
关键词 Block copolymer Co-assembly Metal oxides MESOPOROUS Gas sensing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部