The distortion structure in nanocrystalline NiAl is studied using molecular dynamics simulation. The rounded grain boundaries in these nanograins are a direct source for the observed lattice distortion. The change of ...The distortion structure in nanocrystalline NiAl is studied using molecular dynamics simulation. The rounded grain boundaries in these nanograins are a direct source for the observed lattice distortion. The change of grain size affects directly the volume fraction of the distorted lattice in the nanograin.展开更多
基金The authurs are grateful to the National Natural Science Fourdation of China for financial support(Grants No.59871056,50171071 and 59831020)special funds for the Major State Basic Research Projects of china(Grants No.G2000067104)Dr.J.Y.Wang would tike to thank the Doctoral Foundation of Liaoning Province with the No.2001102009.
文摘The distortion structure in nanocrystalline NiAl is studied using molecular dynamics simulation. The rounded grain boundaries in these nanograins are a direct source for the observed lattice distortion. The change of grain size affects directly the volume fraction of the distorted lattice in the nanograin.