Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors...Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.展开更多
Functionalized carbon nanotubes have already demonstrated great biocompatibility and potential for drug delivery.We have synthesized acid oxidized and non-covalently PEGlyated single-walled carbon nanotubes(SWNTs),whi...Functionalized carbon nanotubes have already demonstrated great biocompatibility and potential for drug delivery.We have synthesized acid oxidized and non-covalently PEGlyated single-walled carbon nanotubes(SWNTs),which were previously prepared for drug delivery purposes,and explored their potential for detoxification in the bloodstream.Our investigations of the binding of SWNTs to a pore-forming toxin pyolysin show that SWNTs prevented toxin-induced pore formation in the cell membrane of human red blood cells.Quantitative hemolysis assay and scanning electron microscopy were used to evaluate the inhibition of hemolytic activity of pyolysin.According to Raman spectroscopy data,human red blood cells,unlike HeLa cells,did not internalize oxidized SWNTs.Molecular modeling and circular dichroism measurements were used to predict the 3-D structure of pyolysin(domain 4)and its interaction with SWNTs.The tryptophan-rich hydrophobic motif in the membrane-binding domain of pyolysin,a common construct in a large family of cholesterol-dependent cytolysins,shows high affinity for SWNTs.展开更多
基金The authors would like to acknowledge the support from the Natural Sciences and Engineering Research Council of Canada in the form of Discovery Grants to ARR and SS(RGPIN-2019-07246 and RGPIN-2022-04988).A.Rosenkranz greatly acknowledges the financial support given by ANID-Chile within the project Fondecyt Regular 1220331 and Fondequip EQM190057.B.Wang gratefully acknowledges the financial support given by the Alexander von Humboldt Foundation.
文摘Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies.
基金by Dr.Tang’s startup fund from University of Waterloo and by grants from the Natural Science and Engineering Research Council(NSERC)of Canada.
文摘Functionalized carbon nanotubes have already demonstrated great biocompatibility and potential for drug delivery.We have synthesized acid oxidized and non-covalently PEGlyated single-walled carbon nanotubes(SWNTs),which were previously prepared for drug delivery purposes,and explored their potential for detoxification in the bloodstream.Our investigations of the binding of SWNTs to a pore-forming toxin pyolysin show that SWNTs prevented toxin-induced pore formation in the cell membrane of human red blood cells.Quantitative hemolysis assay and scanning electron microscopy were used to evaluate the inhibition of hemolytic activity of pyolysin.According to Raman spectroscopy data,human red blood cells,unlike HeLa cells,did not internalize oxidized SWNTs.Molecular modeling and circular dichroism measurements were used to predict the 3-D structure of pyolysin(domain 4)and its interaction with SWNTs.The tryptophan-rich hydrophobic motif in the membrane-binding domain of pyolysin,a common construct in a large family of cholesterol-dependent cytolysins,shows high affinity for SWNTs.