期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recovery of Li_(2)CO_(3)and FePO_(4)from spent LiFePO_(4)by coupling technics of isomorphic substitution leaching and solvent extraction 被引量:2
1
作者 Yong Niu xiaowu peng +4 位作者 Jinfeng Li Yuze Zhang Fugen Song Dong Shi Lijuan Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期306-315,共10页
Efficient and low-cost recycling of spent lithium iron phosphate(LiFePO_(4),LFP)batteries has become an inevitable trend.In this study,an integrated closed-loop recycling strategy including isomorphic substitution lea... Efficient and low-cost recycling of spent lithium iron phosphate(LiFePO_(4),LFP)batteries has become an inevitable trend.In this study,an integrated closed-loop recycling strategy including isomorphic substitution leaching and solvent extraction process for spent LFP was proposed.An inexpensive FeCl_(3)was used as leaching agent to directly substitute Fe^(2+)from LFP.99%of Li can be rapidly leached in just 30 min,accompanied by 98%of FePO_(4)precipitated in lixivium.The tri-n-butyl phosphate(TBP)-sulfonated kerosene(SK)system was applied to extract Li from lixivium through a twelve-stage countercurrent process containing synchronous extraction and stepwise stripping of Li^(+)and Fe^(3+).80.81%of Li can be selectively enriched in stripping liquor containing 3.059 mol·L^(-1)of Li^(+)under optimal conditions.And the Fe stripping liquor was recovered for LFP re-leaching,of which,Fe^(2+)was oxidized to Fe^(3+)by appropriate H_(2)O_(2).Raffinate and lixivium were concentrated and entered into extraction process to accomplished closeloop recycling process.Overall,the results suggest that more than 99%of Li was recovered.FeCl_(3)holding in solution was directly regenerated without any pollutant emission.The sustainable mothed would be an alternative candidate for total element recycling of spent LFP batteries with industrial potential. 展开更多
关键词 Spent LiFePO_(4) Leaching lithium Extraction STRIPPING RECOVERY
下载PDF
Selective recovery of lithium from simulated brine using different organic synergist 被引量:5
2
作者 Huifang Li Lijuan Li +2 位作者 xiaowu peng Lianmin Ji Wu Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期335-340,共6页
The organic synergists, including Octanol, ethyl acetate(EA), butyl acetate(BA), methyl isobutyl ketone(MIBK),diisobutyl ketone(DIBK), N,N-bis(2-ethylhexyl) acetamide(N523) and 8-hydroxylquiolate, were added to the TB... The organic synergists, including Octanol, ethyl acetate(EA), butyl acetate(BA), methyl isobutyl ketone(MIBK),diisobutyl ketone(DIBK), N,N-bis(2-ethylhexyl) acetamide(N523) and 8-hydroxylquiolate, were added to the TBP–FeCl_3 extraction system to extract lithium from brine. The effects of concentration of organic synergist and total organic extractant, molar ratio of Fe/Li, phase ratio, counter-current extraction and the acidity of stripping agent on lithium extraction were investigated to optimize the extraction conditions. Under the optimize conditions, the results of counter-current extraction showed the mixed extraction system was the preponderance on the lithium extraction. Especially the separation of lithium in organic phase and aqueous phase and the separation mass ratio of Mg/Li increased greatly. An extraction mechanism was proposed based on the analysis of FT-IR spectra and Raman spectra. 展开更多
关键词 ORGANIC SYNERGIST LITHIUM EXTRACTION Mixed EXTRACTION system Mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部