Fabrication of atomic dopant wires at large scale is challenging.We explored the feasibility to fabricate atomic dopant wires by nano-patterning self-assembled dopant carrying molecular monolayers via a resist-free li...Fabrication of atomic dopant wires at large scale is challenging.We explored the feasibility to fabricate atomic dopant wires by nano-patterning self-assembled dopant carrying molecular monolayers via a resist-free lithographic approach.The resist-free lithography is to use electron beam exposure to decompose hydrocarbon contaminants in vacuum chamber into amorphous carbon that serves as an etching mask for nanopatterning the phosphorus-bearing monolayers.Dopant wires were fabricated in silicon by patterning diethyl vinylphosphonate monolayers into lines with a width ranging from 1 μm down to 8 nm.The dopants were subsequently driven into silicon to form dopant wires by rapid thermal annealing.Electrical measurements show a linear correlation between wire width and conductance,indicating the success of the monolayer patterning process at nanoscale.The dopant wires can be potentially scaled down to atomic scale if the dopant thermal diffusion can be mitigated.展开更多
As one of the most promising cathodes for sodium-ion batteries(SIBs),the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis.However,their applica...As one of the most promising cathodes for sodium-ion batteries(SIBs),the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis.However,their applications are still hindered by the problems of poor moisture stability and sluggish Na^(+)diffusion caused by intrinsic structural Jahn–Teller distortion.Herein,we demonstrate a new approach to settle the above issues through introducing K^(+)into the structures of Ni/Mn-based materials.The physicochemical characterizations reveal that K^(+)induces atomic surface reorganization to form the birnessite-type K_(2)Mn_(4)O_(8).Combining with the phosphate,the mixed coating layer protects the cathodes from moisture and hinders metal dissolution into the electrolyte effectively.Simultaneously,K^(+)substitution at Na site in the bulk structure can not only widen the lattice-spacing for favoring Na^(+)diffusion,but also work as the rivet to restrain the grain crack upon cycling.The as achieved K^(+)-decorated P2-Na_(0.67)Mn_(0.75)Ni_(0.2)5O_(2)(NKMNO@KM/KP)cathodes are tested in both coin cell and pouch cell configurations using Na metal or hard carbon(HC)as anodes.Impressively,the NKMNO@KM/KP||Na half-cell demonstrates a high rate performance of 50 C and outstanding cycling performance of 90.1%capacity retention after 100 cycles at 5 C.Furthermore,the NKMNO@KM/KP||HC fullcell performed a promising energy density of 213.9 Wh·kg^(−1).This performance significantly outperforms most reported state-ofthe-art values.Additionally,by adopting this strategy on O3-NaMn_(0.5)Ni_(0.5)O_(2),we further proved the universality of this method on layered cathodes for SIBs.展开更多
In this work, single- and double-shelled NiCo2O4 hollow spheres have been synthesized in situ by a one-pot solvothermal method assisted by xylose, followed by heat treatment. Employed as supercapacitor electrode mater...In this work, single- and double-shelled NiCo2O4 hollow spheres have been synthesized in situ by a one-pot solvothermal method assisted by xylose, followed by heat treatment. Employed as supercapacitor electrode materials, the double-shelled NiCo2O4 hollow spheres exhibit a remarkable specific capacitance (1,204.4 F g-1 at a current density of 2.0 A.g-1) and excellent cycling stability (103.6% retention after 10,000 cycles at a current density of 10 A.g-1). Such outstanding electrochemical performance can be attributed to their unique internal morphology, which provides a higher surface area with a larger number of active sites available to interact with the electrolyte. The versatility of this method was demonstrated by applying it to other binary metal oxide materials, such as ZnCo2O4, ZnMn2O4, and CoMn2O4. The present study thus illustrates a simple and general strategy for the preparation of binary transition metal oxide hollow spheres with a controllable number of shells. This approach shows great promise for the development of next-generation high-performance electrochemical materials.展开更多
Triangular Ni(HCO3)2 nanosheets were synthesized via a template-free solvothermal method. The phase transition and formation mechanism were explored systematically. Further investigation indicated that the reaction ...Triangular Ni(HCO3)2 nanosheets were synthesized via a template-free solvothermal method. The phase transition and formation mechanism were explored systematically. Further investigation indicated that the reaction time and pH have significant effects on the morphology and size distribution of the triangular Ni(HCO3)2 nanosheets. More interestingly, the resulting product had an ultra-thin structure and high specific surface area, which can effectively accelerate the charge transport during charge--discharge processes. As a result, the triangular Ni(HCO3)2 nanosheets not only exhibited high specific capacitance (1,797 F·g^-1 at 5 A·g^-1 and 1,060 F·g^-1 at 50 A·g^-1), but also showed excellent cycling stability with a high current density (-80% capacitance retention after 5,000 cycles at the current density of 20 A·g^-1).展开更多
基金Supported by the Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-02-E00075)the Key R&D Program of Zhejiang Province(Grant No.2019C01155)the National Natural Science Foundation of China(Grant No.61874072).
文摘Fabrication of atomic dopant wires at large scale is challenging.We explored the feasibility to fabricate atomic dopant wires by nano-patterning self-assembled dopant carrying molecular monolayers via a resist-free lithographic approach.The resist-free lithography is to use electron beam exposure to decompose hydrocarbon contaminants in vacuum chamber into amorphous carbon that serves as an etching mask for nanopatterning the phosphorus-bearing monolayers.Dopant wires were fabricated in silicon by patterning diethyl vinylphosphonate monolayers into lines with a width ranging from 1 μm down to 8 nm.The dopants were subsequently driven into silicon to form dopant wires by rapid thermal annealing.Electrical measurements show a linear correlation between wire width and conductance,indicating the success of the monolayer patterning process at nanoscale.The dopant wires can be potentially scaled down to atomic scale if the dopant thermal diffusion can be mitigated.
基金the National Natural Science Foundation of China(Nos.52271222,51971146,51971147,52171218,22005190,and 21938005)We also acknowledge the supports of Shanghai Outstanding Academic Leaders Plan,the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00015)+4 种基金Shanghai Pujiang Program(No.21PJ1411100)Shanghai Rising-Star Program(Nos.20QA1407100 and 21QA1406500)the Shanghai Science and Technology Commission(Nos.21010503100,20ZR1438400 and 22ZR1443900)Zhejiang Provincial Natural Science Foundation of China(No.LGG22F010017)the Key R&D Program of Zhejiang Province(Nos.2019C01155 and 2020C01128).
文摘As one of the most promising cathodes for sodium-ion batteries(SIBs),the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis.However,their applications are still hindered by the problems of poor moisture stability and sluggish Na^(+)diffusion caused by intrinsic structural Jahn–Teller distortion.Herein,we demonstrate a new approach to settle the above issues through introducing K^(+)into the structures of Ni/Mn-based materials.The physicochemical characterizations reveal that K^(+)induces atomic surface reorganization to form the birnessite-type K_(2)Mn_(4)O_(8).Combining with the phosphate,the mixed coating layer protects the cathodes from moisture and hinders metal dissolution into the electrolyte effectively.Simultaneously,K^(+)substitution at Na site in the bulk structure can not only widen the lattice-spacing for favoring Na^(+)diffusion,but also work as the rivet to restrain the grain crack upon cycling.The as achieved K^(+)-decorated P2-Na_(0.67)Mn_(0.75)Ni_(0.2)5O_(2)(NKMNO@KM/KP)cathodes are tested in both coin cell and pouch cell configurations using Na metal or hard carbon(HC)as anodes.Impressively,the NKMNO@KM/KP||Na half-cell demonstrates a high rate performance of 50 C and outstanding cycling performance of 90.1%capacity retention after 100 cycles at 5 C.Furthermore,the NKMNO@KM/KP||HC fullcell performed a promising energy density of 213.9 Wh·kg^(−1).This performance significantly outperforms most reported state-ofthe-art values.Additionally,by adopting this strategy on O3-NaMn_(0.5)Ni_(0.5)O_(2),we further proved the universality of this method on layered cathodes for SIBs.
文摘In this work, single- and double-shelled NiCo2O4 hollow spheres have been synthesized in situ by a one-pot solvothermal method assisted by xylose, followed by heat treatment. Employed as supercapacitor electrode materials, the double-shelled NiCo2O4 hollow spheres exhibit a remarkable specific capacitance (1,204.4 F g-1 at a current density of 2.0 A.g-1) and excellent cycling stability (103.6% retention after 10,000 cycles at a current density of 10 A.g-1). Such outstanding electrochemical performance can be attributed to their unique internal morphology, which provides a higher surface area with a larger number of active sites available to interact with the electrolyte. The versatility of this method was demonstrated by applying it to other binary metal oxide materials, such as ZnCo2O4, ZnMn2O4, and CoMn2O4. The present study thus illustrates a simple and general strategy for the preparation of binary transition metal oxide hollow spheres with a controllable number of shells. This approach shows great promise for the development of next-generation high-performance electrochemical materials.
基金Acknowledgements The project was supported by the National Natural Science Foundation of China (Nos. 61525402 and 21275076), Jiangsu Provincial Funds for Distinguished Young Scholars (No. BK20130046), Program for New Century Excellent Talents in University (No. NCET- 13-0853), QingLan Project, Synergetic Innovation Center for Organic Electronics and Information Displays, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Triangular Ni(HCO3)2 nanosheets were synthesized via a template-free solvothermal method. The phase transition and formation mechanism were explored systematically. Further investigation indicated that the reaction time and pH have significant effects on the morphology and size distribution of the triangular Ni(HCO3)2 nanosheets. More interestingly, the resulting product had an ultra-thin structure and high specific surface area, which can effectively accelerate the charge transport during charge--discharge processes. As a result, the triangular Ni(HCO3)2 nanosheets not only exhibited high specific capacitance (1,797 F·g^-1 at 5 A·g^-1 and 1,060 F·g^-1 at 50 A·g^-1), but also showed excellent cycling stability with a high current density (-80% capacitance retention after 5,000 cycles at the current density of 20 A·g^-1).