The large application of renewable energy generation(REG)has increased the risk of cascading failures in the power system.At the same time REG also provides the possibility of new approaches for the suppression of suc...The large application of renewable energy generation(REG)has increased the risk of cascading failures in the power system.At the same time REG also provides the possibility of new approaches for the suppression of such failures.However,the capacity and position of the synchronous generator(SG)involved in regulation limit the power regu-lation speed(PRS)of REG to the overload line which is the main cause of cascading failures,while the PRS of SG is related to the position and shedding power.REG and SGs have difficulty in achieving effective cooperation under constraints of system power balance.Particularly,the dynamic variation of line flow during power regulation causes new problems for the accurate evaluation of line thermal safety under overload.Therefore,a new strategy for quan-titatively coordinating shedding power and power regulation to block cascading failures in the dynamic security domain is proposed in this paper.The control capability and dynamic security domain of the overload line are mod-eled,and the coordination control method based on power regulation is then proposed to minimize shedding power.The algorithm for the optimal control scheme considers the constraints of load capacity,power source capacity and bus PRS.The correctness of the proposed method is verified using case studies.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 51877018in part by the Natural Science Foundation of Chongqing under Grant cstc2019jcyj-msxmX0321in part by the Graduate Research and Innovation Foundation of Chongqing,China under Grant CYB22019.
文摘The large application of renewable energy generation(REG)has increased the risk of cascading failures in the power system.At the same time REG also provides the possibility of new approaches for the suppression of such failures.However,the capacity and position of the synchronous generator(SG)involved in regulation limit the power regu-lation speed(PRS)of REG to the overload line which is the main cause of cascading failures,while the PRS of SG is related to the position and shedding power.REG and SGs have difficulty in achieving effective cooperation under constraints of system power balance.Particularly,the dynamic variation of line flow during power regulation causes new problems for the accurate evaluation of line thermal safety under overload.Therefore,a new strategy for quan-titatively coordinating shedding power and power regulation to block cascading failures in the dynamic security domain is proposed in this paper.The control capability and dynamic security domain of the overload line are mod-eled,and the coordination control method based on power regulation is then proposed to minimize shedding power.The algorithm for the optimal control scheme considers the constraints of load capacity,power source capacity and bus PRS.The correctness of the proposed method is verified using case studies.