This paper conducts a research on modulation characteristics of blue light-emitting diodes (LEDs) used in a visible-light communication (VLC) system. Through analysis of the modulation characteristics of LEDs with dif...This paper conducts a research on modulation characteristics of blue light-emitting diodes (LEDs) used in a visible-light communication (VLC) system. Through analysis of the modulation characteristics of LEDs with different emitting sizes, we find that there is a similar linear relationship between LED’s 3dB bandwidth and the operation current density. This experiment also shows that high series resistance is one major issue that limits our LED's modulation speed. To further improve the LED bandwidth, the resistance can be reduced by optimizing device layout as well as reducing material bulk resistance. Clearly, this study provides an approach to increase the modulation bandwidth of GaN-based LEDs for VLC systems.展开更多
High-quality AlN layers with low-density threading dislocations are indispensable for high-efficiency deep ultraviolet light-emitting diodes(UV-LEDs). In this work, a high-temperature AlN epitaxial layer was grown o...High-quality AlN layers with low-density threading dislocations are indispensable for high-efficiency deep ultraviolet light-emitting diodes(UV-LEDs). In this work, a high-temperature AlN epitaxial layer was grown on sputtered AlN layer(used as nucleation layer, SNL) by a high-yield industrial metalorganic vapor phase epitaxy(MOVPE). The full width half maximum(FWHM) of the rocking curve shows that the AlN epitaxial layer with SNL has good crystal quality. Furthermore, the relationships between the thickness of SNL and the FWHM values of(002) and(102) peaks were also studied. Finally, utilizing an SNL to enhance the quality of the epitaxial layer, deep UV-LEDs at 282 nm were successfully realized on sapphire substrate by the high-yield industrial MOVPE. The light-output power(LOP) of a deep UV-LED reaches 1.65 mW at 20 mA with external quantum efficiency of 1.87%. In addition, the saturation LOP of the deep UV-LED is 4.31 mW at an injection current of 60 mA. Hence, our studies supply a possible process to grow commercial deep UV-LEDs in high throughput industrial MOVPE, which can increase yield, at lower cost.展开更多
To achieve high quality lighting and visible light communication(VLC)simultaneously,Ga N based white light emitting diodes(WLEDs)oriented for lighting in VLC has attracted great interest.However,the overall bandwidth ...To achieve high quality lighting and visible light communication(VLC)simultaneously,Ga N based white light emitting diodes(WLEDs)oriented for lighting in VLC has attracted great interest.However,the overall bandwidth of conventional phosphor converted WLEDs is limited by the long lifetime of phosphor,the slow Stokes transfer process,the resistance-capacitance(RC)time delay,and the quantum-confined Stark effect(QCSE).Here by adopting a self-assembled In Ga N quantum dots(QDs)structure,we have fabricated phosphor-free single chip WLEDs with tunable correlated color temperature(CCT,from 1600 K to 6000 K),a broadband spectrum,a moderate color rendering index(CRI)of 75,and a significantly improved modulation bandwidth(maximum of150 MHz)at a low current density of 72 A∕cm^2.The broadband spectrum and high modulation bandwidth are ascribed to the capture of carriers by different localized states of In Ga N QDs with alleviative QCSE as compared to the traditional In Ga N/Ga N quantum well(QW)structures.We believe the approach reported in this work will find its potential application in Ga N WLEDs and advance the development of semiconductor lighting-communication integration.展开更多
GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) ...GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs.展开更多
Commercial white LEDs (WLEDs) are generally limited in modulation bandwidth due to a slow Stokes process,long lifetime of phosphors,and the quantum-confined Stark effect. Here we report what we believe is a novel plas...Commercial white LEDs (WLEDs) are generally limited in modulation bandwidth due to a slow Stokes process,long lifetime of phosphors,and the quantum-confined Stark effect. Here we report what we believe is a novel plasmonic WLED by infiltrating a nanohole LED (H-LED) with quantum dots (QDs) and Ag nanoparticles(NPs) together (M-LED). This decreased distance between quantum wells and QDs would open an extra non-radiative energy transfer channel and thus enhance Stokes transfer efficiency. The presence of Ag NPs enhances the spontaneous emission rate significantly. Compared to an H-LED filled with QDs (QD-LED),the optimized M-LED demonstrates a maximum color rendering index of 91.2,a 43% increase in optical power at 60 m A,and a lowered correlated color temperature. Simultaneously,the M-LED exhibits a data rate of 2.21 Gb/s at low current density of 96 A∕cm2(60 m A),which is 77% higher than that of a QD-LED. This is mainly due to the higher optical power and modulation bandwidth of the M-LED under the influence of plasmon,resulting in a higher data rate and higher signal-to-noise ratio under the forward error correction.We believe the approach reported in this work should contribute to a WLED light source with increased modulation bandwidth for a higher speed visible light communication application.展开更多
In this study, the effect of double superlattices on GaN-based blue light-emitting diodes(LEDs) is analyzed numerically. One of the superlattices is composed of InGaN/GaN, which is designed before the multiple quantum...In this study, the effect of double superlattices on GaN-based blue light-emitting diodes(LEDs) is analyzed numerically. One of the superlattices is composed of InGaN/GaN, which is designed before the multiple quantum wells(MQWs). The other one is AlInGaN/AlGaN, which is inserted between the last QB(quantum barriers) and p-GaN. The crucial characteristics of double superlattices LEDs structure, including the energy band diagrams, carrier concentrations in the active region, light output power, internal quantum efficiency, respectively,were analyzed in detail. The simulation results suggest that compared with the conventional AlGaN electronblocking layer(EBL) LED, the LED with double superlattices has better performance due to the enhancement of electron confinement and the increase of hole injection. The double superlattices can make it easier for the carriers tunneling to the MQWs, especially for the holes. Furthermore, the LED with the double superlattices can effectively suppress the electron overflow out of multiple quantum wells simultaneously. From the result, we argue that output power is enhanced dramatically, and the efficiency droop is substantially mitigated when the double superlattices are used.展开更多
文摘This paper conducts a research on modulation characteristics of blue light-emitting diodes (LEDs) used in a visible-light communication (VLC) system. Through analysis of the modulation characteristics of LEDs with different emitting sizes, we find that there is a similar linear relationship between LED’s 3dB bandwidth and the operation current density. This experiment also shows that high series resistance is one major issue that limits our LED's modulation speed. To further improve the LED bandwidth, the resistance can be reduced by optimizing device layout as well as reducing material bulk resistance. Clearly, this study provides an approach to increase the modulation bandwidth of GaN-based LEDs for VLC systems.
基金Project supported by the National Natural Sciences Foundation of China(Nos.61334009,61474109,61306050)
文摘High-quality AlN layers with low-density threading dislocations are indispensable for high-efficiency deep ultraviolet light-emitting diodes(UV-LEDs). In this work, a high-temperature AlN epitaxial layer was grown on sputtered AlN layer(used as nucleation layer, SNL) by a high-yield industrial metalorganic vapor phase epitaxy(MOVPE). The full width half maximum(FWHM) of the rocking curve shows that the AlN epitaxial layer with SNL has good crystal quality. Furthermore, the relationships between the thickness of SNL and the FWHM values of(002) and(102) peaks were also studied. Finally, utilizing an SNL to enhance the quality of the epitaxial layer, deep UV-LEDs at 282 nm were successfully realized on sapphire substrate by the high-yield industrial MOVPE. The light-output power(LOP) of a deep UV-LED reaches 1.65 mW at 20 mA with external quantum efficiency of 1.87%. In addition, the saturation LOP of the deep UV-LED is 4.31 mW at an injection current of 60 mA. Hence, our studies supply a possible process to grow commercial deep UV-LEDs in high throughput industrial MOVPE, which can increase yield, at lower cost.
基金National Key Research and Development Program of China(2018YFB0406702)Professorship Startup Funding(217056)+2 种基金Innovation-Driven Project of Central South University,China(2018CX001)Project of State Key Laboratory of High-Performance Complex Manufacturing,Central South University,China(ZZYJKT2018-01)Fundamental Research Funds for the Central Universities of Central South University(2018zzts147)。
文摘To achieve high quality lighting and visible light communication(VLC)simultaneously,Ga N based white light emitting diodes(WLEDs)oriented for lighting in VLC has attracted great interest.However,the overall bandwidth of conventional phosphor converted WLEDs is limited by the long lifetime of phosphor,the slow Stokes transfer process,the resistance-capacitance(RC)time delay,and the quantum-confined Stark effect(QCSE).Here by adopting a self-assembled In Ga N quantum dots(QDs)structure,we have fabricated phosphor-free single chip WLEDs with tunable correlated color temperature(CCT,from 1600 K to 6000 K),a broadband spectrum,a moderate color rendering index(CRI)of 75,and a significantly improved modulation bandwidth(maximum of150 MHz)at a low current density of 72 A∕cm^2.The broadband spectrum and high modulation bandwidth are ascribed to the capture of carriers by different localized states of In Ga N QDs with alleviative QCSE as compared to the traditional In Ga N/Ga N quantum well(QW)structures.We believe the approach reported in this work will find its potential application in Ga N WLEDs and advance the development of semiconductor lighting-communication integration.
基金supported by the Natural Science Foundation of China(Nos.61306051,61306050)the National High Technology Program of China(No.2014AA032606)
文摘GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (E1S) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs.
基金National Key Research and Development Program of China (2018YFB0406702)National Natural Science Foundation of China (61925104)+1 种基金Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology),Ministry of Education,ShenzhenFundamental Research Funds for the Central Universities of Central South University (2018zzts147)。
文摘Commercial white LEDs (WLEDs) are generally limited in modulation bandwidth due to a slow Stokes process,long lifetime of phosphors,and the quantum-confined Stark effect. Here we report what we believe is a novel plasmonic WLED by infiltrating a nanohole LED (H-LED) with quantum dots (QDs) and Ag nanoparticles(NPs) together (M-LED). This decreased distance between quantum wells and QDs would open an extra non-radiative energy transfer channel and thus enhance Stokes transfer efficiency. The presence of Ag NPs enhances the spontaneous emission rate significantly. Compared to an H-LED filled with QDs (QD-LED),the optimized M-LED demonstrates a maximum color rendering index of 91.2,a 43% increase in optical power at 60 m A,and a lowered correlated color temperature. Simultaneously,the M-LED exhibits a data rate of 2.21 Gb/s at low current density of 96 A∕cm2(60 m A),which is 77% higher than that of a QD-LED. This is mainly due to the higher optical power and modulation bandwidth of the M-LED under the influence of plasmon,resulting in a higher data rate and higher signal-to-noise ratio under the forward error correction.We believe the approach reported in this work should contribute to a WLED light source with increased modulation bandwidth for a higher speed visible light communication application.
基金Project supported by the National Key Research and Development Program of China(No.2016YFB0400102)the Beijing Municipal Science and Technology Project(Nos.Z161100002116032,D12110300140000)+3 种基金the National Basic Research Program of China(No.2011CB301902)the Guangzhou Science & Technology Planning Project of Guangdong Province,China(Nos.201604016095,201604030035)the Zhongshan Science & Technology Planning Project of Guangdong Province,China(No.2017A1008)the Science & Technology Planning Project of Guangdong Province(No.2015B010112002)
文摘In this study, the effect of double superlattices on GaN-based blue light-emitting diodes(LEDs) is analyzed numerically. One of the superlattices is composed of InGaN/GaN, which is designed before the multiple quantum wells(MQWs). The other one is AlInGaN/AlGaN, which is inserted between the last QB(quantum barriers) and p-GaN. The crucial characteristics of double superlattices LEDs structure, including the energy band diagrams, carrier concentrations in the active region, light output power, internal quantum efficiency, respectively,were analyzed in detail. The simulation results suggest that compared with the conventional AlGaN electronblocking layer(EBL) LED, the LED with double superlattices has better performance due to the enhancement of electron confinement and the increase of hole injection. The double superlattices can make it easier for the carriers tunneling to the MQWs, especially for the holes. Furthermore, the LED with the double superlattices can effectively suppress the electron overflow out of multiple quantum wells simultaneously. From the result, we argue that output power is enhanced dramatically, and the efficiency droop is substantially mitigated when the double superlattices are used.